
NAVAL POSTGRADUATE SCHOOL)
Monterey, California

AD-A280 0721IIII Iiii I II Ilil I 1

DTIC
ICS ELEC T ED

'rT' t A JUN 0 81994 .

F
THESIS

IMPROVEMENT OF JANUS USING PEGASUS I-MEl ER
RESOLUTI(N 1ATABASE WITH A TRANSPUTER

NETWORK

by

Cem Ali DUndar

March 1994

SThesis Advisor: Se-Hung Kwak

ZIA Approved for public release; diuibution is unlimited.

"9c•4 6 7 (p98
f7;rý %%

I I II I

RREPORT DOCUMENTATION PA'GE ODN.00I

PMW d~IGP"6pw~a Ob su O sb~ ' Wd"""n is OWAVO f SWiOMWn HI S SiKmPP" .I I w 1 I IWO W s"W" w mava ws 0otG" df R mus ~Sm"s
Dob 1 V dmq Sut 04. A#WWW. VA 11NA. OW ID f Oft d Muwwunut wd Buftk Ppwok PA*AmA se Pwaim (07*41ft), Wmasgbui. OC

1. GENY SE NL f~., BF.~ Mr RPOT AT19 Maste~r's Thesis ____________

4. TITLE AND SUBTITLE 6. FUNDING NUMBERS
Improvement Of Janus Using Pegasus 1 -meter Resolution Database

With A Transputer Network(U)

6. AUTHOR(S)
Dtlndar, Cern Ali

17.PER OMINGORGNiATO NA) ANDWESS(S) 6. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

9. 00450 I 01 MOIOIGAE CY NM) ADRES(I) 10. SPON.IORINGJ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12*. DISTRIBUTION / AVAILABIUT STATEMENT 12h. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

12. ABSTRACT (44xifruV 2W wu

Line-of-sight (LO-S) calculation for the Janus combat simulation model is critical to the processes
being simulated and impacts the run speed (ratio of game time to real time), since it may be the single most
computationally expensive algorithm in simulation.

This thesis presents design and implementation of a transputer network with the purpose of providing
an efficient LOS calculation in a distributed memory and computing environment. The approach taken
was to use a processor farming method to speed up the LOS calculation. The programs were implemented
on a network of 15 transputers using 3L Parallel C++ (version 2. 1. 1) programmidng language. A 1&-meter
resolution terrain database of Fort Hunter Liggett, California was used to get more reliable LOS results.

Expected gain of our system was 3.873 (4135). After timing tests, we found that we could Speed up
the LOS calculation by a factot of 2.581 when comparing the 15 transputer configuration to a conventional
processor which is equivalent to a single transputer. The difference between expected gain and our actual
gain was found to be the communication overhead in the network of transputers. We stated that further
significant improvements can be provided by using our approach with more memory and fastcr
transpuiters. ___________

14. SUBJECT TERMS15NUBROPAE
Janus, Transputer, Pegasus Database, Parallellism, Line-of-sight25

iT.SEURTYCLSSIFICATION 16. SECURITY CLASISIFICATION it. 5ECIJRMT CLA5SIFICATON 20. LIMIATION 0;ABSTRACT
OF REPORT IOF THIS PAGE IOF ABSTRACT
=Unc'llassimfied Unclassified IUnclassified SA

NSN 7540-01-280-5500 Standad Form 298 (Rev. 2-89)
i Pmerbed by ANlSI Sd. 239-18

Approved for public release; distribution is unlimited

IMPROVEMENT OF JANUS USING I-METER RESOLUTION DATABASE
WITH A TRANSPUTER NETWORK

by
Cem Ali Dandar

LTJG. Turkish Navy
BS, Turkish Naval Academy, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1994

Author: 0A.
'.em Ali Diindat1

Approved By: z i') , -".
Se-Hung Kwak. Thois Advisor

Eue-ne P. Paulo, Second Reader

Ted Lewis, Chairman,
Department of Computer Science

ABSTRACT

Line-of-sight (LOS) calculation for the Janus combat simulation model is critical to

the processes being simulated and impacts the run speed (ratio of game time to real time),

since it may be the single most computationally expensive algorithm in simulation.

This thesis presents design and implementation of a transputer network with the

purpose of providing an efficient LOS calculation in a distributed memory and computing

environment. The approach taken was to use a processor farming method to speed up the

LOS calculation. The programs were implemented on a t-.twork of 15 transputers using 3L

Parallel C++ (version 2.1.1) programming language. A 1-meter resolution terrain database

of Fort Hunter Liggett, California was used to get more reliable LOS results.

Expected gain of our system was 3.873 (,5-3). After timing tests, we found that we

could speed up the LOS calculation by a factor of 2.581 when comparing the 15 transputer

configuration to a conventional processor which is equivalent to a single transputer. The

difference between expected gain and actual gain was found to be the communication

overhead in the network of transputers. We stated that further significant improvements can

be provided by using our approach with more memory and faster transputers.

Acce~aon For

NTIS CRA&I
DWIG TAB

.. .. .-.tBy
A,ij;Idll-,1it y COot•

Avdil .- c ,

Oi-,t
SCa

iii

THESIS DISCLAIMER

Many terms used in this thesis are registered trademarks of commercial products.

Rather than attempting to cite each individual occurence of a trademark, all registered

trademarks appearing in this thesis are listed below the firm holding the trademark:

INMOS Limited. Bristol. United Kingdom:

inmos

IMS

occamn

Internationli Business Machines Corporation:

IBM

1LLUL

3L

Diital Fguinment Corooration:

AXP

DECchip

Perihelon Software Ltd.:

Helios

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Se-Hung Kwak, whose interest in the subject of parallel

computing with transputers was the foundation on which this thesis was produced. His

continued support, enthusiasm, patience, and guidance were invaluable assets for the

completion of this work.

I also would like to thank Major Eugene P. Paulo, for his helps and supports everytime

we needed to coordinate with TRAC MTRY group dining my thesis work.

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. BACKG RO UND ... I

1. Janus .. 1

2. The Transputer ... 2

B. SCOPE OF TH ESIS .. 2

C. THES!S ORGANIZATION ... 3

II. TRANSPUTERS AND PARALLEL COMPUTING .. 4

A. PARALLELISM ... 4

B. THE INM OS TRA N SPUTER .. 7

1. Com m unicating Sequential Processes ... 8

2. Transputer Architecture ... 9

a. Overall .. 9

b. Central Processor .. 11

c. Floating Point Unit .. 11

d. M em ory System .. 11

e. Links ... 12

f. Peripheral Interface ... 12

g. Error Handling ... 12

h. Program m ing IM S T800 ... 12

i. Processes And Concurrency .. 12

j. Priority ... 13

k. Comm unications ... 14

3. Program m ing Languages .. 14

vi

a. Oceam Program m ing L anguage ... 15

b. Alsys Ada Progra m n g Language .. 16

c. 3L's Parallel C++ Program m ing Language .. 16

(1) Abstract M odel .. 16

(2) Hardware M odel ... 16

(3) Softw are M odel ... 17

(4) Parallel Execution Threads ... 18

(5) Configuring An Application .. 19

(6) Processor Farm s ... 20

IE . DETAILED PROBLEM STATEM ENT .. 21

A. PEG A SUS DATABASE ... 21

1. Introduction .. 21

2. D atabase Organization ... 21

3. Post Structure ... 25

B. LINE-OF-SIGHT CALCULATION .. 28

1. Line-of-sight for Detection .. 28

2. LO : Through Sm oke/D ust Clouds .. 30

3. LO S For Deploym ent ... 31

C. W HY 1-M ETER RESOLUTIO N? .. 31

IV. TRANSPUTER IMPLEMENTATION OF LINE-OF-SIGHT CALCULATION 34

A. HARDW ARE ... 34

1. G eneral .. 34

2. Background ... 34

a. The Transpute.r/Host Relationship ... 34

vi'

b. IBM PC As A Host ... 36

c. The IM S B004 Evaluation Board ... 37

d. ALTA CTRAM (Computation TRAnsputer Module) 41

e. ALTA Remote Tram Holder ... 41

(1) Jum per Options ... 44

(2) External Links .. 44

(3) TRAM SLOTs and Topology ... 44

(4) System Services ... 44

f. HSI/SBus .. 45

g. The IM S B012 Evaluation Board ... 46

(1) PI Connections ... 50

(2) P2 Connections ... 50

(3) IMS B012 as a Slave to a Master Controller 51

(4) IM S B012 as a System M aster .. 51

3. Our Im plementation .. 51

(1) Disabling the T414 Transputer on the B004 Board 52

(2) Setting Up the ALTA Remote Tram Holder 52

(3) Setting Up the Link Speed .. 59

B. SOFTW ARE ... 61

1. General .. 61

a. Installing HSI/Bus and Setting the Link Speed 61

b. Our Processor Farm Application ... 62

(1) M aster, W orker and Router Tasks .. 63

(2) Configuration File ... 64

c. Loading the Height Data .. 68

d. LOS Calculation .. 71

viii

e. The Afserver Task on Host ... 72

V. EXPERIMENTAL RESULTS FOR LINE-OF-SIGHT CALCULATION 73

A. PERFORMANCE ANALYSIS .. 73

B. TH E RESULTS .. 74

VI. CONCLUSIONS AND RECOMMENDATIONS .. 80

A . CO N CLU SIO N S ... 80

B. RECOMMENDATIONS FOR FURTHER RESEARCH 80

I. Connection To Janus .. 80

2. INMOS T9000 Transputers .. 81

3. ALPHA AXP Farm Programming Environment .. 81

4. Parallel Programming Support Environments ... 81

APPENDIX A - SUN SPARC STATION SOURCE CODE 83
APPENDIX B - HOST COMPUTER (PC) SOURCE CODE 112
APPENDIX C - SOURCE CODE FOR READING TERRAIN DATA 179
LIST O F REFEREN CES .. 211
INITIAL DISTRIBUTION LIST ... 213

ix

DEDICATION

I dedicate my thesis to my parents Nimet and Ahmet Ddndar who were my first teachers

and of whom I'm very proud to be their son.

II

I. INTRODUCTION

A. BACKGROUND

1. Janus

The Janus simulation was fielded in 1978 [Ref. 1]. It was developed as a nuclear

effects modeling tool by Lawrence Livennore National Laboratories and became known as

Janus(L). TRADOC Analysis Command (TRAC) at White Sands Missile Range (WSMR)

modified Janus(L) to meet Army combat development needs. The modified Janus(L)

model became known as Janus(T). The Army realized the value of the system for use in the

training arena, and tasked TRAC-WSMR with developing a multipurpose system from the

best of Janus(L) and Janus(T), which was termed Jan.;s(A). Through enhancements and

upgrades, Janus(A) has reached a version lev'!l of 4.0 as of January 1994.

The Janus model simulates battle between Blue and Red units. It supports conflict

from individual systems and company-sized units through brigade/regimental-sized units.

It is an interactive, two-sideo, closed, stochastic, ground combat simulation featuring

precise color graphics. Janus is "interactive" in that the command and control functions are

entered on workstations by rrilitary analysts who decide what to do in crucial situations

during simulated combat. "Two-sided" refers to the two opposing forces, blue and red,

directed simultaneously by two sets of players. "Closed" means that the disposition of

opposing forces is largely unknown to the players in control of the other force. "Stochasutc"

refers to the way the system determines the results of actions such as direct fire

engagements; according to the laws of probability and chance. "Ground combat" means

that the principal focus is on' ground man-zuver and artillery units, although Janus also

models weather and its effects, day and night visibility, engineer support, minefield

employment and breaching, :otary and fixed wing aircraft, resupply and a chemical

environment. Janus is an event-driven simulation.

2. The Transputer

The term "transputer" is an acronym for "transistor computer" where it reflects

the ability of this device to be used as a system's building block, much like the transistor

was in the past [Ref. 2]. The nice feature of the transputer is that it adds a new level of

abstraction, which provides a very simple way to design a concurrent system. As a formal

definition we could state that the transputer is a single-chip microcomputer that has its own

local memory and four communication links. The links may be thought as of as small

special purpose processors which steal no cycles from the main CPU, in such a way that we

could have all four links and the CPU working at the same time, without degrading the

performance of the program's execution.

The transputer is a parallel microprocessor, generally categorized as a Multiple

Instruction Multiple Data (MIMD) computer [Ref. 3] [Ref. 4:pp. 498-500]. This means that

transputers are used to execute different operations on separate data at the same time. This

is somewhat like a football team where individual players execute their own special

assignments together during a play. A transputer operates as a stand- alone machine or as a

processing element interconnected by their links to form computing arrays and networks.

Modular design enables transputers to be used together in arbitrary numbers to support a

broad range of applications, and the inherit redundancy of multiprocessing can be utilized

for fault tolerance.

B. SCOPE OF THESIS

Line-of-sight (LOS) is a central process in combat simulations that works at item

level. The LOS algorithm is critical to the processes being simulated and impacts the run

speed (ratio of game time to real time), since it may be the single most computationally

expensive algorithm in the simulation.

This study is focused specifically on the following two objectives:

2

1. To implement an efficient calculation of LOS in a distributed memory environment

by using transputers and 1-meter resolution terrain database.

2. To show that the usage of 1-meter resolution terrain database for LOS calculation

purposes gives more precise and reliable results than the current 50 or 100-meter resolution

terrain databases.

C. THESIS ORGANIZATION

This thesis is presented in six chapters and three appendices.

Chapter I is the introduction to the problem and the background for Janus combat

simulation system and the transputer.

Chapter II describes the current issues about parallel computing with transputers.

Chapter III presents a detailed problem statement for this thesis. The current issues

about Janus which are PEGASUS terrain database organization and the algorithm for LOS

calculation are described in this chapter.

Chapter IV describes the transputer implementation of LOS calculation in both

hardware and software aspects.

Chapter V presents the experimental results of the transputer implementation of LOS

calculation.

Chapter VI states the conclusions and recommendations for further research.

Appendix A includes the Sun SPARC Station source code.

Appendix B includes the Host Computer (PC) source code.

Appendix C includes the source code for reading terrain data from Pegasus Database.

S..i ii3

IL TRANSPUTERS AND PARALLEL COMPUTING

A. PARALLELISM

In the first computing wave, scientific and business computers were more or less

identical as they were all big and slow [Ref. 6 :p. 1]. Even the early electronic computers

were not very fast. This was the "prehistory of computing", where computing had to be

employed at any cost.

The second and third waves brought on mainframes, minis, and finally micros. This

diversity of computing caused a number of niches to develop which broadened and

deepened the computer industry. Scientific and business computing went their separate

ways, and there seemed to be a computer in just about everyone's pnw.t. ,

But the original power users who pioneered computing continued to emphasize speed

above all else. Single-processor supercomputers achieved unheard of speeds beyond 100

million instructions per second, and pushed hardware technology to the physical limits of

chip building. But soon this trend will come an end, because there are physical and

architectural bounds which limit the computational power that can be achieved with a

single-processor system.

We are now enjoying the Parallel Wave [Ref. 6:pp. 1-5] of computing, where

performance is enhanced by using multiple processors. Parallelism is the process of

performing tasks concurrendy. It has been touted as a solution to the problem of making

computers faster and faster. When the physical limits for single-processor systems are

reached, parallelism will be the only course. However, even before the speed limit is

reached, there is an economic motivation to use parallel processing in place of faster and

more expensive single-processor systems. Indeed, the economic advantage of low-cost,

multiple processing systems was realized in the mid-1980s. Hence, the 1990s were poised

for the decade of parallelism simply due to economic forces.

4

Many parallel architectures have been discussed in the past, and there are several

superminicomputer parallel systems available today. However, most of these are unable to

provide the very wide range of price/performance that parallel processing promises and that

transputer-based systems can provide [Ref. 5].

To understand this, it is worth examining the normal approach to parallel systems

design. Most parallel systems are constructed by connecting up multiple computers with a

single high speed bus. A simplified system can be imagined, consisting of multiple

processors sharing a single global memory accessed via a single high performance bus.

This shape of system will provide very disappointing results for obvious reasons; a

processor can only access memory when no other processor is accessing memory. With

high performance processors, this will provide an "Der limit of perhaps two or three

processors before performance stops increasing. i is p',sC-!e to speed the system up, but

only by use of memory that is very much faster thai. f. pi_',:ý sors. This is expensive.

In more realistic system each processor has some pnvazc, local memory in addition

to bus access to global memory. The local memory could be organized as either a private

address space, or a sufficiently large cache. Now, it is possible to imagine a system where

a processor spends perhaps 90% of its time accessing local memory and only 10%

accessing the shared store. Then with reasonably-priced memory it should be possible to

build a computer which can use perhaps twenty or thirty processors before saturating.

The bottleneck in this system is the shared resource, either the bus or the memory.

The bus itself is a poor choice for interconnect in any case; not only does its logical

performance degrade as more processors contend for it, the extra electrical loads imposed

by adding processors to the bus either slow the system down as more machines are added,

or set a much lower bandwidth on the bus for lower processor counts.

Whichever is the bottleneck at present, the apparently inexorable improvement in

semiconductor technology will arrange for it to be the bus since affordable memory and

processor speeds are increasing faster than improved backplane technologies. As a result,

this sort of system is guaranteed non-future proof; as device speeds increase, the system

5

performance flattens out since the maximum number of processors usable before bus

saturation reduces with time.

The system architecture can be changed slightly to remove the straitjacket imposed

by the bus. An obvious improvement is to use multiple buses, probably arranged in some

regular, structured manner, like a hierarchy. Now, clusters of computers, each with its own

local memory, share some cluster memory via a cluster bus. Clusters are connected by other

buses; these buses themselves can have memory. Then, assuming that 90% of accesses are

local, and that 90% of the non-local accesses are to the local cluster shared memory, the

earlier arguments suggest that for a well-behaved problem, a twenty cluster system could

be built, with each cluster having twenty processors.

This solution should work for a range of applicatioi~s, but the amount of logic and

interconnect needed to implement it makes it expensive. It has another problem, too; while

it is an acceptable architecture for a single, centralized computer, shared buses do not seem

to be an appropriate paradigm for distributed parallel systems.

These criticisms can be resolved by a small change in attitude to the system

architecture, and then a re-implementation. Assume that the system is an actual parallel

computing system, rather than just a collection of computers each with access to some

shared system resource; then the processors must be interacting with one another. Each will

be working on a portion of the problem, and will interchange partial results with other

processors as they jointly progress toward completing the program. To do this, each

machine will likely provide the equivalent of mailboxes, where the other processors can

leave their own results and their requests for information.

But if the processors are cooperating by exchanging messages, then there is no need

to use shared memory to implement the communication. Instead, direct interprocessor data

transfer channels can be used to Direct Memory Access (DMA) [Ref. 4:pp. 297-301]

information from one processor to another. Given such a mechanism, we cure several

problems at once: as we add processors, we add interprocessor bandwidth; the processors

do not need to be physically located together, and so can be components of a distributed

6

system without necessarily altering the system design or software; and the cost of the

interprocessor hardware can be much reduced from bus costs (since, for example, there is

no need for an address, we can save by not having address lines; since there is exactly one

destination for each driver, the electrical design is simpler).

This is the system architecture chosen for the transputer. Each transputer comes with

one or more interprocessor links, each one DMA-driven to ensure that communication can

take place in parallel with computation. Transputers further reduce system cost by using

serial interconnect; minimizing pin count reduces transputer cost and interconnect cost,

".ses board layout and minimizes power consumption.

B. THE INMOS TRANSPUTER

The transputer [Ref. 7:pp. 7-30J was developed by INMOS Limited of Bristol, United

Kingdom, and has since expanded into a family of very large scale integrated (VLSI)

components with different capabilities. Since the transputer is a component designed to

exploit the potential of VLSI, that technology allows large numbers of identical devices to

be manufactured cheaply. For this reason, it is attractive to implement a concurrent system

using a number of identical components, each of which is customized by an appropriate

program. The revolutionary architecture of the transputer enables the potential of

concurrency to be realized for the first time, making today's applications easier to

implement and creating a new dimension for tomorrow's systems.

The transputer uses silicon capability to make programming simpler and to make

engineering easier than for any previous microprocessor. The architecture has been

optimized to obtain the maximum of functionality for the minimum of silicon. It allows

different trade offs between performance and cost, always giving an intrinsic advantage

over older architectures. The architecture is future..proof. It spans the range of

applications from microcontrollers to supercomputers. Transputers will exploit future

levels of integration by increasing the amount of processing, memory, communications and

concurrency within the same architecture.

7

A typical member of the transputer family is a single chip containing processor,

memory, and communication links which provide point to point connection between

transputers. The transputer provides a direct implementation of the process model of

computing. A process is an independent computation, with its own program and data,

which can communicate with other processes executing at the same time. Communication

is by message passing, using explicitly defined channels.

The transputer is designed so that it can implement a set of concurrent processes.

Special instructions share the processor time between the concurrent processes and perform

interprocess communication.

In addition, the transputer is designed so that its external behavior corresponds to the

formal model of a process. As a consequence, it is possible to program systems containing

multiple interconnected transputers in which each transputer implements a set of processes.

Since a program is defined as a set of processes, it can be mapped onto such a system in a

variety of ways, such as minimizing cost, or optimizing throughput, or maximizing the

responsiveness to specific events.

The transputer specifically implements the concept of communicating sequential

processes (CSP) defined by C.A.R. Hoare [Ref. 8] and to be used as a building block for

distributed computing systems. The CSP concept describes the interactions between

programs that execute in parallel.

1. Communicating Sequential Processes

Hoare's Communicating Sequential Processes (CSP) is one model for concunent

or parallel programming, and it is central to the design of the transputer. In CSP, a program

is a collection of processes which can be combined to execute sequentially on a single

processor or in parallel on multiple processors.The data space for any process executing in

parallel is disjoint, thus alleviating the need for sharing memory between processors.

Although shared memory is not available, processes must still communicate with each

other. Therefore, CSP utilizes message passing between any pair of parallel processes via

declared communication channels between two processes.

In order for the concurrent processes to communicate, message passing must be

synchronized. Such communication occurs when one process names another as destination

for output and the second process names the first as source for input. This allows the value

to be output by the source process to be copied into the destination process. Note that the

synchronization imposes a requirement that an output (input) command must be delayed

until the corresponding input (output) command in the other process is ready to be

executed.

2. Transputer Architecture

Several versions of the transputer are currently available. This thesis considers

transputer types IMS TSOO and IMS T805'. The following sections describe the features of

an IMS T800 20MHz transputer. A complete description of all currently available

transputers can be found in [Ref. 71 and [Ref. 91. A block diagram of an IMS T800

transputer is shown in Figure 2.1.

a. Overall

The IMS T800 is a 64 bit floating point member of a family of transputers, all

which are consistent with the INMOS transputer architecture. It integrates a 32 bit

microprocessor, a 64 bit floating point unit, four standard transputer communication links,

4Kbytes on-chip RAM for high speed processing, a configurable memory interface and

peripheral interfacing on a single chip, using a 1.5 micron CMOS process.

1. T805 is a new version of T800. They are essentially same processors nd our lab has a mixture of
TS00 and T805 transputers.

9

Floating Point Unit

32 BIT

System 2 BIr 32 Bit

Services Processor

Link
ServiceslTimers I•Ln

Interface
S4K Bytes 3 f 2BfLn

of .Interfaceink
On-chip Ineac

RAM e Link
Interface

• ~Link

External 32 Brr Interface
Memory
Interface Event

Figure 2.1: IMS T800 Block Diagram of the 32-bit Transputer

10

b. Cergt'aW Prucnsor

The 32 bit processor providi.s 10 MIPs performance. The design achieves

compact programs, efficient high level language implementation and provides direct

support for the occam (a programming !aiiguage that will be mentioned later) model of

concurrency. Procedure calls, process switching and interrupt latency are all sub-

microsecond. The processor shares its time between any number of concurrent processes.

A process waiting for communication or a timer does not consume any processor time. Two

levels of process priority enable fast interrupt response to be achieved.

c. Floating Point Unit

The 64 bit floating point unit provides single length and double length

operation according to the ANSI-IEEE 754-1985 standard for floating point arithmetic and

able to perform floating point arithmetic operations concurrently with the processor;

sustaining in excess of 1.5 Mega Flops.

The floating point unit (FPU) on the T800 consists of a microcoded

computing engine which operates concurrently with and under the control of the Central

Processing Unit (CPU). It contains a three deep floating point evaluation stack on which

floating point numbers, represented in the IEEE format can be manipulated. All data

communication between memory and the floating point unit is done under the control of

the CPU.

d. Memory System

The 4Kbytes of on chip static RAM provide a maximum data rate of 80

Mbytes/sec with access for both the processor and links. The IMS T800 can directly access

a linear space up to 4 Gbytes. The 32 bit wide external memory interface uses multiplexed

data and address lines provides a data rate up to 26.6 Mbytes/sec. A configurable memory

controller provides all timing, control and DRAM refresh signals for a wide variety of

memory systems. Internal and external memory appear as a single continuous address

space.

11

e. Links

The IMS T800 uses a DMA block transfer mechanism to transfer messages

between memory and another transputer product via the INMOS links. The link interfaces

and the processor all operate concurrently, allowing processing to continue while data is

being transferred on all of the links.

The four standard INMOS serial links on the IMS T800 give a unidirectional

transmitted data rate of 1.7 Mbytes/sec and a combined (bidirectional) data rate per link of

2.3 Mbytes/sec, at a link speed of 20 Mbits/sec. Link speeds of 10 Mbits/sec and a 5 Mbits/

sec are also available on the IMS T800 making the device compatible with all other INMOS

transputer products.

f. Peripheral Interface

The memory controller supports memory mapped peripherals, which may use

DMA. Links may be interfaced to peripherals via an INMOS link adaptor. A peripheral can

request attention via the event pin.

g. Error Handling

High-level language execution is made secure with array bounds checking,

arithmetic overflow detection etc. A flag is set when an error is detected. The error can be

handled internally by software or externally by sensing the error pin.

IL Programming IMS T800

The IMS T"00 transputer can be programmed in several languages including

Occam, C, C++, Ada, Fortran and Pascal.

L. Processes And Concurrency

The transputer provides direct support for concurrency. It has a microcoded

scheduler which enables any number of concurrent processes to be executed together,

sharing the processing time. This removes the need for a software kernel.

12

A process starts, performs a number of actions, and then either stops without

completing or terminates complete. Typically, a process is a sequence of instructions. A

transputer can run several processes concurrently 2. Processes may be assigned either high

or low priority, and there may be any number of each.

At any time, a concurrent process may be

Active - Being executed

- On a list waiting to be executed.

Inactive - Ready to input

- Ready to output

- Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume

any processor time. It allocates a portion of the processor's time to each process in turn.

Each process runs until it has completed its action, but is deschfduled while waiting for

communication from another process or transputer, or for a time delay to complete.

j. Priority

The IMS T800 supports two levels of priority. Priority 1 (low priority)

processes are executed whenever there are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more

high priority processes are able to proceed, then one is selected and runs until it has to wait

for a communication, a timer input, or until it completes processing. If no process at high

priority is able to proceed, but one or more processes at low priority are able to proceed

then one is selected. Low priority processes are periodically timesliced to provide an even

distribution of processor time between computationally intensive tasks.

Note that the inteption of having two priority levels for processes is to allow

those high priority tasks, which must be executed when they are invoked, to preempt a

currently executing low priority process and execute to completion. It is important that the

2. This is actually a time-sharing for a single CPU system.

13

high priority tasks have a very short 'xecution time (less than one slicetime period).

Otherwise tne low priority processes, which should be the computation intensive processes,

will not be given fair access to the processor.

k. Communications

Communications between processes is achieved by means of channels.

Process communication is point-to-point, synchronized and unbuffered. As a reult, a

channel needs no process queue, no message queue and no message buffer.

A channel between two processes executing on the same transputer is

implemented by a single word in memory; a channel between proc ;ses executing on

different transputers is implemented by point-to-point links. The processor provides a

number of operations to support message passing, the most important being input message

and output message.

The input message and output message instractions use the address of the

channel to determine whether the channel is internal or external. Thus the same instruction

sequence can be used for both, allowing a process to be written and compiled without the

knowledge of where its channels are connected.

The piocess which first becomes ready must wait until the second one is also

ready. A process performs an input or output by loading the evaluation stack with a pointer

to a message, the address of a channel, and a count of the number of bytes to be Wansferred,

and then executing an input message or output message instruction. Data is transferred if

the other process is ready. If the channel is not ready or is an external one the process will

deschedule.

3. Programming Languages

There are several languages which can be used to write programs for use on the

transputer. Among these are Occam, Alsys-Ada, 3L's Parallel C, C++, Pascal and Fortran.

Three of the languages were considered for this thesis. These three languages were Occam

[Ref. 10], Alsys-Ada [Ref. 11], and 3L's Parallel C++ [Ref. 12] [Ref. 13].

14

a. Occan Programming Language

Occam [Ref. 10] is a high level programming language that is designed to run

concurrent processes on a network of processing components (e.g. transputers). There are

two prime concepts in Occam; they are concurrency and communication. These allow

processes to run simultaneously and transfer information, via channels, from process to

process. It is based on concepts founded by David May in Experimental Programming

Language and Tony Hoare in Communicating Sequential Processes.

It allows processes running on a transputer system to communicate only

through channels. These channels are asyncluonous, but require the send and receive

processes to be ready to send and receive at the same time. This idea of being ready to send

and receive simultaneously is known as rendezvous.

Occam has five kinds of constructions that are used to build a process from

smaller processes (primitive or other). These constructions are:

- IF: This construction guards a number of processes by a boolean expression.

- CASE: This construction is used to select z.,ie of a number of options.

- WHILE: This construction is used for loops.

- PAR: This construction has the effect of allowing the processes within its

bounds to execute in parallel.

- ALT: This construction is used to allow a processor to select only one of

several guarded processes for execution. The process whose guard is first found to be true

is selected

This language allows th: programmer to concentrate on a small, manageable

set of processes which can then be connected with other sets of processes. In Occam a set

of processes or a set of interconnected processes can be regarded as a single process.

The above features make Occam a powe. ful and versatile language. .t has not

gained wide acceptance thus far probably due to the limited use of multiprocessor

(transputer) systems and due to the development of parallel versions of other widely used

languages.

15

b. Alsys Ada Programming Language

In October 1989, Alsys produced the first compiler capable of supporting

multi-processor programming in Ada [Ref. 1 I). Alsys Ada Compilation System consists of

the compiler and binder, operating in the Alsys Multi-Library Environment. The compiler

generates executable code for transputer for T4 or I8 transputer targets. Multi-Library

Environment provides a powerful way of managing Ada development efforts. It allows

compilation units to be flexibly shared among libraries, and eliminates the need to copy

library units to share them, along with the associated version control problems.

Although it has the features mentioned above, we decided against using it,

because the compilation time is too long when compared to the other languages.

c. 3L's Parallel C++ Programming Language

(1) Abstract ModeL The treatment of parallel processing in transputer

systems is based on the idea of communicating sequential processes which is explained in

part B of this chapter. In this model, a computing system is a collection of concurrently

active sequential processes which can only communicate with each other over channels. A

channel connects exactly one process to exactly one other process and can only carry

messages in one direction. Each process can have any number of input and output channels,

but note that the channels in a system are fixed; new channels cannot be created during its

operation. A process could be a bit of hardware or a software module; in particular it may

also be another complex system, itself consisting of a number of communicating processes.

(2) Hardware ModeL The transputer was designed to be used as a

component in concurrent systems. Each transputer processor has four Inmos links, to

connect it with other transputers. Each link has two channels, one in each direction. These

hardware channels provide synchronized, unidirectional communication.

Arbitrary networks of transputers can be constructed simply by

connecting their links together with ordinary wires, the only limitation being that each

processor cannot be directly connected to more than four others. A transputer can therefore

16

be viewed as a single process in a multi-transputer system. However, it is also possible for

any number of concurrent processes to be run on an individual transputer. Any word in the

transputer's memory may be used as a channel to connect one internal process to another.

The address of such a channel word is used to identify it to the transputer instructions (and

Parallel C++ functions) which send or receive messages. The contents of the word are used

by the hardware to synchronize sending and receiving processes.

From a program's point of view, these internal channels and the hardware

link channels are identical. The same instructions (or parallel C++ functions) are used to

send and receive messages on both internal channels and the hardware link channels.

Hardware link channels are ideatified by special fixed addresses, but internal channels have

addresses allocated by software.

The equivalence of internal channels to hardware link channels means it

is possible to develop a parallel system on a single transputer and then move some of its

processes onto other transputers without having to recompile any code.

(3) Software ModeL Parallel C++ is based on the same abstract model of

communicating sequential processes as the transputer hardware.

A complete application is viewed as a collection of one or more

concurrently executing tasks. Each task has its own region of memory for code and data, a

vector of input ports, and a vector of output ports. The port vectors are passed to the task

as arguments to its main function. The code of a tasik is a single transputer image (.b4) file

generated by the ordinary linker. linkt.

Tasks can be treated as atomic building blocks for parallel systems, to be

wired together rather like electronic components. Indeed, several such basic building-block

tasks are supplied with the compiler.

Each element in the input and output port vectors is of type "pointer to

channel word", (*CHAN). Ports are bound to real channel addresses by configuration

software external to the task itself; the bindings can be changed without recompiling or

relinking the task. Extended C++ run-time library functions supplied with the compiler

17

allow C++ programs to send and receive messages over the channels bound to a task's

ports.

The configuration software also provides ways of specifying which

software tasks are to be run on which hardware processors. Each processor can support any

number of tasks, limited only by available memory.

Tasks placed on the same processor can have any number of

interconnecting channels. Tasks placed on different processors can only be connected

where physical wires connect the processors' links. Each logical connection between two

tasks placed on different processors is assigned exclusive use of one the physical link

channels connecting the processors. The number of interconnections between tasks on

different processors is therefore limited by the number of hardware links each one has.

(4) Paragel Execution Thrtads. The software features described so far

allow us to build parallel systems by connecting together the ports of a number of relatively

independent tasks. In particular, all the tasks have separate code and data, and are only

allowed to communicate with each other by sending messages over channels.

All of the code of a task can be written in an ordinary sequential language,

except for one extra feature needed by languages based on the communicating sequential

processes idea. This extra feature is a way of making a process wait until a message is

received on any one of a number of input channels. In Parallel C++, it is catered for by the

ability to create new concurrent threads of execution within a task. The task creates one

thread for each input channel. Each thread executes a sequential message input call and

handles messages received on that channel. Each one of Parallel C's threads has its own

stack (allocated by its creator), but shares its code, and all of its static and heap data, with

any other threads in the same task. Semaphore functionq in the run-time library are used to

prevent threads to interfering with each other.

(5) Configuring An Application. Once an application has been designed

and written as a collection of communicating tasks, it is loaded into physical network of

i8

transputers. First, each individual task is built by compiling all its source files with the C++

compiler and using the linker (linkt) to combine the resulting binary (.bin) files with the

Parallel C++ run-time library to produce a task image (.b4) file. Then, a bootable

application image file must be generated from the component task (.b4) files. The program

which does this is called the configurer. It is driven by a user-supplied configuration file

which specifies:

* the hardware configuration (processors, and the wires connecting them)

on which the application is to be run;

"* the names of the .b4 files containing the component tasks of the

application;

"* the connections between the various tasks' ports;

"0 the placement of particular tasks onto particular tasks oia, pw. •icular

processors in the physical network.

The output of the configurer is an application file which can booted into

the specified hardware network and run using the same afserver program used for simple

stand-alone programs. The afserver task is an ordinary MS-DOS executable (.exe) file that

runs on the PC. It loads executable .b4 files into the transputer and also acts as a file server,

handling I/O requests made by the transputer. The afserver SrAi the transputer execute in

parallel and communicate via an• INMO$S link. The messages sent to the afserver are

normally generated by the Parallel C++ run-time library. It converts 1/0 operations into

messages requesting the afserver to perform MS-DOS operations and then waits for the

afserver to reply.

(6) Processor Farms. The tools described so far allow you to build

applications which execute on any transputer network the wiring of which can be specified

in advance in a configuration file. For many parallel computations it is useful to be able to

create applications which will automatically configure themselves to run on any network

of transputers. Such applications will automatically run faster when more transputers are

added to a network, without recompilation or reconfiguration.

19

Parallel C++ allows us to create applications like this, provided the

application can be implemented by a processor farm, and provided that there is enough

memory on each processor in the network to support the required loading and message

handling software.

The processor farm is a method of building applications for the wransputer.

Many users have found it a useful technique, for the following reasons:

* It takes full advantage of the transputer's parallel processing facilities

and the ability of transputers to work together in groups.

* Many existing sequential programs can be converted into processor

farms without much difficulty.

* A processor farm is not restricted to a particular network of transputers,

but will automatically take advantage of the processors it finds.

A processor farm includes two independent programs, or tasks, written by

the user. These are called the master task and the worker task. There is only one copy of the

master task, and this is placed on the root transputer, that is, the transputer which is directly

connected to the host. A copy of the worker task is placed on every transputer in the

network.

The function of the master task is to break up the job which is to be done

into a number of small, independent sub-jobs, each of which is performed by one of the

copies of the worker task. The master does this by sending details of the sub-job to be done

to the worker task. The worker task sends the results of its work back to the master task,

which combines it with the results from all the other worker tasks. The worker task is

written in such a way that immediately after sending its results back to the master, it is ready

to receive details of another sub-job, and so on.

The communication between the master and the workers can be in two

ways. Either another task called router can be written by the user, or special procedures

which are included in the run-time libraries of the parallel !anguages and automatically

added to the processor farm can be used.

20

H1I. DETAILED PROBLEM STATEMENT

A. PEGASUS DATABASE

1. Introduction

The PEGASUS Perspective View Database (PVDB) [Ref. 14] is a geographic

database containing elevation data, gray shades taken from aerial photographs, vegetation

heights, and other information required for perspective view generation. The PVDB comes

in four resolutions: 1-, 4-, 16-and 64-meter.

The Fort Hunter-Liggett (FHL) PVDB covers a rectangular area on the ground

measuring 32x28 kilometers. Its southwest corner is at UTM coordinates 43328,63904 and

its northeast corner is at UTM 76095,92575. The latitude and longitude of these two points

are approximately 35° 48'N, 1210 25'W and 361 4' N, 121° 4'W.

2. Database Organization

The PVDB is organized as a collection of tiles, blocks, and posts (see Figure 3.1,

Figure 3.2 and Figure 3.3). A post is the smallest element in the database and covers an area

on the ground measuring lx1, 4x4, 16x16, or 64x64 meters for the 1-, 4-, 16-, and 64-meter

databases respectively. A post is the only database element for which the area of coverage

is resolution dependent.

A block is a collection of posts that always covers an area on the ground

measuring 256x256 meters, but the number of posts in a block depends on the resolution.

A block in the 1-meter PVDB contains 256x256 posts, a 4-meter block is made up of 64x64

posts, a 16-meter block contains 16x16 posts and a 64-meter block has 4x4 posts.

A tile, the largest element in the database, is a collection of blocks which always

covers an area on the ground measuring 4096x4096 meters. A tile contains a 16x 16

arrangement of blocks regardless of resolution.

21

UTM NORTHING

iii NI Io

I // 7

I.- ~CV_

In. 01
Uj_ _ _ _

IN

UNIH.LtION iSOAd

Figure 3.1: Pegasus Perspective Database

22

SMIOO18 9 L

i F

ILI

-s is i I I I I • ;

~ i.-T .l Ii I i 2.

I .i

I ,3

S: 1 I I , , ,

W I3I I I

S; ! 1 'i i I 11 "'

: : : i: ; :1.

0 '1

\ -
s /-l¢

Figure 3.2: PVDB Tile Structure

23

$*.WIYM AIVA 111OC

/ 14'* go More

Oh TASAA,/
'aR IF,

TILIs
Tu.6 ~ ~ ~ t to!______

1160 VI 3M Of e i c" MR' m ~~ I minj

lip_ __ _ -IV "D Va a I MV I mm

a~ ma 30-t o I r ;A l

43 -3 UI -' I I -ppw 1
6-memW OATh vMaCU

asU I adai MIMI pm 10 Isf

Of 1I 31 61 OP 101 pgtA- t PSI .

as a 30 1 40o I iUmgtFw.,Am I oan love

"Iu11tGTA tC
Z" 3 POSTS

Figure 3.3: PVDB Block Structure

24

As shown in Figure 3. 1, The Fort Hunter-Liggett (FHL) covers a rectangular area

which consists of 56 tiles totally. The terrain data for 25 of them (white area in Figure 3. 1)

forms the actual database. Specifically, it covers 400 km2 area of FHL. This area is used for

training purposes.

Now, we can summarize the size information of a tile, a block and a post for 4

different resolutions as follows:

RESOLUTION POST SIZE BLOCK SIZE TILE SIZE

1 meter 32 bits 256 Kbytes 64 Mbytes
4 meter 32 bits 16 Kbytes 4 Mbytes
16 meter 32 bits 1 Kbyte 256 Kbytes
64 meter 32 bits 64 Bytes 16 Kbytes

3. Post Structure

Figure 3.4 shows how each post in the PVDB is packed and how the 32 bits are

distributed among the elements:

3 2 1

1098 7654321098765432109876543210

E NS
ELE L UCI NOR VGT VID A S GSV

2 TB

Figure 3.4: PVDB Post Structure

25

The element information is as follows:

ELEMENT NUMBER MAXIMUM
CODE OF BITS VALUE DESCRIPTION

ELE 11 2047 Elevation, in meters
EL2 12 4095 Elevation, in half-meters
UCI 2 3 Under Cover Inaex
NOR 4 15 Surface Norma! Indicator
VGH 4 15 Vegetation Height Index
VID 2 3 Vegetation ID
NAT 1 1 Nature
SSB 1 I Sun Shade Bit
GSV 6 63 Gray Shade Value

Each element has the following meanings (see Figure 3.5):

ELE: The bald terrain elevation plus the vegetation height (in meters) above the

lowest point in the database. At FHL the lowest point is sea level.

EL2: Same as ELE except the units are in half-meters.

UCI: The height, in meters, of a cultural feature above the ground (tree branches,

eaves of buildings, etc.).

NOR: A value which serves as an indication of the surface normal.

VGH: Height of the cultural feature. The stored values of 0 to 15 indicate

vegetation heights of 0 (water), 0 (grass), 1, 2, 3, 4, 5, 8, 10, 15, 20, 25, 30, 35, 40, and 47

meters.

26

N

4II

...

z

4n4

- ii

Figure 3.5: Databa-se Eliement Defiition

27

VID: Indicates the cultural feature. This value is combined with UCI, NOR,

VGH, and NAT to determine what a particular object is.

NAT: If set to 1, this value indicates the cultural feature is natural, otherwise it is

man-made.

SSB: If set to 0, this post is shaded by another cultural feature. This value is time-

dependent.

GSV: A linear set of values ranging from 0 to 63, where 0 indicates black and 63

is white.

B. LINE-OF-SIGHT CALCULATION

Line-of-sight (LOS) is a central process in combat simulations that works at item

level [Ref. 11. The LOS algorithm is critical to the processes being simulated and impacts

the run speed (ratio of gme tim- to real time), since it may be the single most

computationally expensive algorithm in simulation. Some LOS considerations in Janus

have been simplified to increase computational efficiency.

There are three general aspects of LOS processing [Ref. 1 :pp. 107-1101:

1. LOS in support of detections.

2. LOS through smoke and/or dust clouds.

3. LOS supporting force deployment.

For this thesis, we implemented the LOS calculation for the first aspect which is LOS

in support of detections. A short description will be given for the other two aspects.

1. Line-of-sight for Deteati,&n

The first c--rmination to be made is whether or not terrain features block the

LOS between the observer and the target (see Figure 3.6). The process is as follows:

28

Figure 3.6: Line-of-sight for Detection

29

- The direct line between the observer and the target is determined, its length

calculated and it is divided into equidistant points. Each point is tested to

determine if a terrain feature affects the probability of LOS (PLOS).

- The number and the location of points or the line are determined as follows:

- Compute the distance between the observer and the target (delta(X) and

delta(Y)).

- Determine N(X) and N(Y) by dividing delta(X) and delta(Y),

respectively by the terrain grid size. Assign the larger of N(X) or N(Y)

to Np, which is the number of points to be tested along the LOS line.

- Compute dX = delta(X) / Np and Dy = delta(Y) / Np.

- Start at the observer's position + (dx,dy) and determine the terrain height

(ground e.levation) of the grid in which that point rests. If the ground elevation

is greater than that of the observer, LOS is blocked and the process is completed

for that observer-target pair.

. If the terrain height at that point is less than or equal to the height of the observer,

add the height of trees/urban areas in that grid and recompute the terrain height.

If the ground elevation + features height is greater than that of the observer,

PLOS is decremented by the LOS degradation factor caused by features in the

grid.

- If the resulting PLOS is greater than 0.0 1, dx and dy are added to the old position

and the process continues until LOS is considered blocked or the target position

is reached. A random number is drawn and compared with the resultant PLOS

to determine if acquisition has taken place.

2. LOS Through Smoke/Dust Clouds

If LOS exists between the target and the observer, the model checks to see if any

smoke or dust blocks the LOS line.

30

3. LOS For Deployment

The LOS for any unit can be displayed by the garner from the workstation by

pucking the LOS block on the menu and then the unit. The parameters of the LOS fan are

attached to each unit, depending on its sensor (height, range) and how the orientation and

width of the fan have been previously set by the gamer.

C. WHY 1-METER RESOLUTION?

To have reliable data that represents a terrain, there are some concepts that should be

considered. First, we will describe these concepts with the help of Figure 3.5 and Figure

3.7.

AX2

AX4 H

H, TERRAIN PLAIN

BASE ELEVATION PLANE

D D

FIgure 3.7: General View of A Terrain

31

The calculation of LOS is based on data stored in a grid of square cells. The elevation,

the height of trees or urban buildings are stored as pan of the terrain database and they are

the factors which cause the unevenness of the terrain.

In Figure 3.7, D represents the length of one sid. of square cells. A X, and A X2

represent the "absolute variation" which shows the unevenness of the terrain. H, and H2

represent the height values to be assigned to those square cells.

The real height values are mostly expected to have some decimal digits. So, these

values should be rounded by using a resolution value before being assigned to the square

cells. We call this resolution value as "height resolution" and symbolize it as "A H".

The question at this moment is how we can choose the best A H. To answer this

question, first we consider a flat terrain (see left cell in Figure 3.7)which means that A X is

small. In this case, a small a H can be reasonable. But, when a rough terrain which has a

big AX is considered (see right cell in Figure 3.7), a small AH will not work well. For

example, assume we are using 10 centimeter height resolution when dealing with a terrain

which has 10 meter of absolute variation. Using such a small height resolution i.e.

sensitivity for an absolute variation which is relatively too high for that height resolution

value will not give reliable rounded numbers for the real height values for the square cells.

So, our first conclusion is as follows:

Conclusion 1: The best idea is to equalize A H and A X or, to choose A H which

is bigger than A X.

Before applying the first conclusion to our problem, we should first normalize

absolute variation and height resolution. Eq 3.1 and Eq 3.2 show this process:

Normalized Terrain Variation M (Eq 3.1)
D

Nort,,alized Height Resolution L- (Eq 3.2)D

32

After normalizing process, we can approach to our problem more specifically as

follows:

We assume the reasonable normalized terrain variation for a man-made flat surface

as about 0.5%, for a natural terrain as about 5% and for a rough terrain as about 50%.

Since, The Fort Hunter-Liggett training area can be accepted as a rough terrain, then

our second conclusion is as follows:

Conclusion2: The normnlized height resolution to be chosen should be around

50%.

Another important factor for our problem is the length of one side of a square cell,

namely D. It is obvious that when D increases, AX will increase with a high probability

since more elevation differences, more trees or more urban buildings will be inside the

borders of one square cell. We believe that this situation should be avoided to have reliable

height values for each cell. Because, we will use a constant height resolution value and a

constant D for our all database and we should not increase the probability of having big

values of AX by increasing D. So, our third conclusion is as follows:

Conclusion 3: For rough terrain databases the D value should be as small as it

can.

When we considered all of the concepts, factors and conclusions, we see that 1-meter

resolution database with a 50 centimeter height resolution which has a 50% normalized

height resolution is best to apply to our problem, and we believe that it represents The Fort

Hunter-Liggett terrain very reliably.

33

IV. TRANSPUTER IMPLEMENTATION OF LINE-OF-SIGHT

CALCULATION

A. HARDWARE

1. General

The designed network of transputer implementation of LOS calculation consist of

following elements:

- An IBM PC as a host

- An IMS B004 Evaluation Board inside IBM PC

- An ALTA Remote TRAM Holder

- An ALTA CrRAM-25-4F (with 1 T805 25 MHz transputer)

- A SUN SPARC Station

- An ALTA HSI/SBus inside SUN SPARC Station

- An IMS B012 Evaluation Board

- 16 ALTA CTRAM-25-4F (with 16 TSO 20 MHz transputers)

A general view of the network is shown in Figure 4.1. In section 2, each of the

network elements will be mentioned in detail. In section 3, the implementation will be

described with the modifications made by us towards our design purposes.

2. Background

a The Transputer/Host Relationship

The transputer is normally employed as an addition to an existing computer,

referred to as the host. Through the host, the transputer application can receive the services

of a file store, a scrmen, and a keyboard as shown in Figure 4.2.

When the host is equipped with an add-in transputer interface board and the

appropriate software, we call it a transputer development system. Presently, the host

computer can be an IBM PC or compatible, a NEC PC, a DEC MicroVAX II, or a Sun

34

WM

!U

Figure 4.1: General View of the Implementation Network

35

SPARC Station in transputer development systems. But with the current capacity of our

laboratory we are able to use an IBM PC for our implementation.

Link

Screwn_ from server ROOT Link
Host File Sa-er t ever TRANSPUTER

Keyboard TO OTHER

TRANSPUTERS

Local Hard Disk

Figure 4.2: The Transputer/Host Relationship

b. IBM PC As A Host

The transputer communicates with the host along a single INMOS link. A

program called a server [Ref. 15], executes on the host at the same time as the program on

the transputer network runs. The server ensures that the access requirements of the

application in terms of keyboard, screen, and f'ilng are fully satisfied. All communications

between the application running on the transputer and the host services (like screen,

keyboard, and filling resources) take the form of messages. The standard transputer C, C++,

Pascal, and Fortran development systems uses a server called afserver. The Occam toolset

uses a server called iserver.

The root transputer in a network is the transputer connecting to the host bus

via a link adapter. Any other transputers in the network are connected together using

36

INMOS links, to the root transputer. A transputer network can contain any size and mix of

transputer types.

Transputer components form a unique hardware environment which is not

immediately compatible with most existing personal computers (PC) or main frames upon

which development work is accomplished. The [MS B004 evaluation board was designed

to meet these needs by interfacing a transputer memory with an IBM type PC allowing the

software developer to edit, compile and test software using the PC as a host.

c. The IMS B004 Evaluation Board

The [MS B004 board is logically divided into three distinct parts [Ref. 16]:

1. The transputer, with buffered links and one or two megabytes of RAM.

2. The PC subsystem logic, which allows a program running on the

Personal Computer to reset and analyze systems.

3. The [MS C002 link adaptor, which interface to a parallel address/data

bus, such as the one provided on the system expansion slots within an

IBM PC. The link adaptor is accessed by a program running on the

Personal Computer to transfer data to and from the transputer. This

device can convert PC's byte-wide parallel data into serial link data for

the transputer links, and visa versa.

These three distinct parts of the board are joined together by jumpers. The

"Reset" jumper allows the PC subsystem to respond to addresses from the PC, and connects

the transputer's reset, analyze, and error signals to those controlled by the PC. The "Link"

jumper connects the link adaptor to one of the transputer's links, and allows the Link

Adaptor to respond to addresses from the PC. Figure 4.3 shows a block diagram of the B004

board which fits in a full length eight bit slot of an IBM PC [Ref. 17).

Before any program can be downloaded to a B004 board from a PC, two

jumper sockets must be fitted correctly. The use of these jumpers allows more than one

37

B004 to be present within a PC, but allowing only one of them to respond to the Transputer

Development System (TDS).

Rag
AaaIrW

BBufrred
Link Ln

INISý

I Buer and AddBf ISu

Decode

IBM PC
Interface

Figure 4.3: IMS B004 Evaluation Board Block Diagram

The board which has the jumpers fitted is designated the Master, and any

number of other INMOS evaluation boards can be attached to this one via the links. Figure

4.4 shows the rear edge connectors of the B004, looking from the rtar of :he board. As can

be seen, there are two columns of pins, and these are grouped into sets of five, suitable for

the five way sockets which terminate the various cables supplied.

The link sockets are self explanatory. The Up, Down and Subsystem sockets

are concerned with system control, initialization and error handling. The simplest way to

use them is to connect the DOWN socket of the Master TDS board to the Up socket of the

38

next board with the Reset cable, and then daisy chain the Down from each board to the Up

of the next. This method ensures that when the TDS resets the first board, all others in the

chain are also reset (see Figure 4.5).

b a

PCLink

LinkO fl] Link 1
Component Side Solder Side

Link2 Link3

PCSystern Subsystem

"Up Down

Bottom

Figure 4.4: The Rear Edge Connectors of the B004

Master Board

up [] Down

' DnDown

Reset Up

Jumper U

Figure 4.5: Daisy Chaning of the Subsequent Boards

39

The fl004 board uses a group of 5 way connectors. to simplify the location of

the various leads for a system (see Figure 4.6).

Pin b It

I GND NC
2 (mbsing) (maswn&)
3 PCLinkOut NC
4 PCLinkla NC
5 GND NC
6 Not~ink NC
7 GND GND
9 (Missing) (missing)
9 LinkOut 0 LiakOut I
10 Linkin0 LinkIn I
11 GND GND

12 (gap) (gap)
13 GND GND
14 (Missing) (missing)
1s LinkOut 2 LinkOut 3
16 LUnkn 2 LinkIn 3
17 GND GND

is (gap) (gap)
19 (gap) (gap)
A0 (gap) (gPP)
21 (gpP) (gap)

22 PCNotReset SubsystemNotReset
23 PCNotAmalyse SubsysttmNotAnalyse
24 PCNotErrw SubsystemNotError
25 GND GND(m~issng)
26 (mbsing) (Miming)
27 NotSystem NC
29 UpNotReset DownNotReset

29 UpNotAnzlyse DowuNotAnhlyse
30 UpNotError DownNot~mrr
31 GND GND(wissing'
32 GND(misulng) GND(ualssing)

Fligure 4.6: The B004 Board Edge Connector Pinout

40

The NotLink (b6) and NotSystem (b27) are used in conjunction with the Link

and Reset jumpers described previously. When these signals are at logic 0, they select the

functiorn %ssociated with either reset or link to respond to signals from the PC.

d. ALTA CTRAM (Computation TRAnsputer Module)

The ComputeTRAM (or CTRAM) [Ref. 18] consists of a circuit board with

transputer, memory, and connective hardware which is plugged into a TRAM Holder from

ALTATechnology or similar boards from INMOS. The CTRAM includes from 1 to 32

Mbytes of DRAM and supports the IMS T80x transputer (with a chip floating point

processor) or IMS T425 (integer only) transputers. A variety of processor speeds and

memory speeds are available, providing users with a wide range of cost-effective compute

modules.

The CTRAM is the basic unit for computation in parallel processing

applications. With its range of external memory configurations and processor speeds, the

CTRAM is a versatile tool for the system designer or the system integrator. The end-user

can find extra value from the CTRAM by matching the configuration of each CTRAM with

the needs of his application. This customization results in a tailored, economical mix of

processors and memory configurations.

CTRAMs may be connected to other transputer modules via its four

transputer links to form a wide variety of topologies.

The module pinouts and descriptions for CT-RAM is shown in Table 4.1.

e. ALTA Remote Tram Holder

The Remote TRAM Holder [Ref. 19] may be mounted inside of a disk

enclosure, or in a chassis suitab!e for holding disk drives and/or transputer modules. Figure

4.7 shows the block diagram of an ALTA Remote Tram Holder.

41

TABLE 4.1: CTRAM MODULE PINOUTS AND DESCRIPTIONS

Pin Name Function

Out

1 Link2omt Out Link 2 output

2 Link2in In Link 2 input

3 VCC Power (+5V)

4 Linklout Out Link I output

5 Linklin In Link I input

6 LinkSpeedA In Transputer link speed selection A

7 LinkSpeedB In Transputer link speed selection B

8 Clockin In 5MHz clock signal

9 Analyze In Transputer analyze

10 Reset In Transputer reset

11 notError Out Transputer error indicator (inverted)

12 LinkOout Out Link 0 output

13 LinkOin In Link 0 input

14 GND Ground

15 Link3out Out Link 3 output

16 Link3in In Link 3 input

42

97K- =o r-'llgD

i ""

41. • . .

0 .1

A54 00

glo 00i

000

Fgr 4.7: Th Blc Diga fAT emt rmHle

,O0403

I0

6.. ."..O

I I 0

he0j,OI seO.. "o *o 0"o 0' 00.%

r ,

i**i ... ,4,, Ioqi**

{ I I I ¶ I I I_ ii I

Figure 4.7: The Block Diagram of ALTA Remote Tram Holder

43

(I) Jumper Options. The jumpers in location P8 are provided to allow a high

degree of configuration connects Link 0 of Module 0 with external link 0. The pins are

labeled as to module and the link, and contain an arrow pointing out of the LINKOUT

signal towards the LINKIN signal. The user may insert jumpers to connect any extemal

links.

Jumper Ji is factory-set to 20 Megabits/Second. The link speed can be

changed to 10 Megabits/Second as a second alternative.

(2) External Links. The differentially-driven links on the module are

coni cted via modular plugs and jacks. The modular connectors found at locations P1, P2,

P3, and P4 correspond with XO, X 1, X2, and X3 of the configuration area (P8). Those links

can be connected to any available links in the TRAM SLOTs by jumpers or configuratioi,

modules.

(3) TRAM SLOTs and Topology. There are four TRAM SLOTs on the

motherboard, labeled SLOT0 to SLOT3. They are an-anged such that only a single pair of

links (between SLOTI and SLOT2) is committed (hardwired). All other links arc brought

out to the P8 configuration area.

(4) System Services. The Remote TRAM may be used without connecting

system services (Error, Reset, and Analyze) to the host. The board will assert RESET upon

power on. However, in some instances, the user may wish to access system services from

the host. Connector P5 contains the equivalent of UP system services and should be

connected to the host. Connector P6 contains the equivalent of DOWN services and should

be connected towards the next module in the chain. The Error, Reset, and Analyze signals

will be propagated UP and DOWN (depending upon the signal) properly to allow daisy-

chaining of the system services.

The signals on PS and P6 are as follows:

PIN SIGNAL

1 GROUND
2 ERROR
3 RESET
4 ANALAYZE

f. HSI/SBus

The HSI/SBus [Ref. 20) is a single-slot SBus interface between the Sun

SPARC Station and tnansputers. It provides a high-speed interface between the SBus found

on a Sun SPARC Station and Transputers.

The HSI/SBus is a 32-bit SBus slave interface for a Sun SPARC Station. The

HSI provides system services and four bidirectional tansputer links to external transputers,

using modular connectors and twisted-pair telephone cables. The links are differentially

driven using AT&T 41LJR series of drivers. The HSI/SBus board is a single slot printed

circuit board which conforms to Sun Microsystem's published standards for a single slot

SBus card. Figure 4.8 shows the layout of the board and the locations of the major board

components.

Handle and
SBus Connector Dual Po RAM

Tranputer
Links
and

System
Services

-- • •Transputer

Figure 4.8: The HS1/SBus Board Layout

45

The SBus interface provides an electrical connection between the host and

external transputer modules. It provides four, bi-directional transputer links to external

transputers, and provides a set of control signals (Reset, Analyze, and Error) which are

controlled by the driver on the SPARC Station host.

When the interface is initialized, transputer boot code is loaded into the dual-

ported RAM and the transputer is then booted from that RAM. The transputer then executes

the boot code to perform the interface functions.

Connections to external devices are made by using modular telephone handset

jacks. Figure 4.9 shows the six jacks on the end of the HSI-card.

Facing the back of the SPARC Station

LINKO LINKI LINK2 LINK3 DOWN UP

Figure 4.9: HSI-Card Link and Control Connections

The four links from the host interface are designated LinkO, Link 1, Link2, and

Link3.

Reset, Analyze, and Error signals are provided for both DOWN and UP

connections. The DOWN connector sends the Reset and Analyze signals to remote

transputers.

g. The IMS 8012 Evaluation Board

The IMS B012 [Ref. 21] is a eurocard TRAM motherboard which is a memble-

of a family of TRAM motherboards which have a compatible architecture. External signals

enable it to control a subsystem of motherboards, or to be a component of such a subsystem.

46

The smallest TRAM is "size 1". Each of the 16 sites for modules on the IMS

B012 board accepts a size I module. Each module site, or "slot" has connections for four

INMOS links which are designated link 0, link 1, link2, and link 3. TRAMs which are

larger than size 1 can be mounted on the B012. A larger module occupies more than one

slot and need not use all of the available link connections provided by the slots which it

occupies.

The B012 has two IMS C004 link switches. These devices are able to connect

together links from the slots and 32 links which are available on an edge connector. The

connections can be changed by control data passed to the board down a configuration link,

which may come from some master system or from one of the TRAMs on the B012 itself.

The B012 has two DIN41612 96-way edge connectors, PI and P2. These

carry almost all signals and power to/from the board and are easily identified from the

board silk screen printing and from Figure 4.10. P2 carries power, pipeline and

configuration links and system control signals (reset, analyze, and error).

Slotl Slot2
Slots Slot6 PI

Slot9 HSlotl
Slotl3 Slotl4

SlotW Slot3

Slot4 Slot7

Slots Slotll P2

Slotl2 SlotlS

IMS B012

FIgure 4.10: IMS B012 Slot Positions

47

The link connections to the 16 slots are organized as follows:

Two links from each slot (links I and 2) are used to connect the 16 slots as a

16-stage pipeline (in a pipeline, multiple processors are connected end-to-end as in Figure

4.11). The pipeline is actually broken by jumper block K1. KIwill usually be jumpered in

the standard way to give a 16-stage pipeline but can allow other combinations. Figure 4.12

shows the standard jumper configuration for KI which connects all 16 TRAMs in a

pipeline.

A SLOTO0- SLOT I SLOT ISM

Figure 4.11: A Module Pipeline

0 0

0 0

Figure 4.12: KI Standard Configuration

48

Link 1 on slot 0 is wired to an edge connector (P2) and is called PipeHead.

Link 2 on slot 15 is also taken to P2 and is called PipeTail. By connecting the pipe heads

and tails from multiple boards together, a large, multi-board pipeline is created.

The other two links (links 2 and 3) of each slot are, in general, connected to

two IMS C004 programmable link switches. The IMS C004 has 32 input pins and 32 output

pins, plus an INMOS link (ConfigLink) used to send configuration information to the IMS

C004. Any of the output pins can be "connected" to any of the input pins, so a signal

presented on the input pin would be buffered and transmitted on the output pin (with a slight

delay). The switch connections are made according to information sent to the IMS C004

down its ConfigLink. The two IMS C004s on the IMS B012 allow 64 link connections to

be made under software control.

The Reset, Analyze and Error pins of TRAMs (and transputers) is generally

referred to collectively as "system services". The system service signals are used to reset

TRAMs and transputers, to place transputers in an analyze state (for debugging) and to

carry the fact that an error has occurred in one processor in an array back to some host

system which will deal with the error condition.

Some TRAMs and most evaluation boards are capable of generating the

system services for other TRAMs and transputers. This is called a subsystem control

capability. The IMS B012 can be connected to another board with subsystem control and

also accommodate one TRAM with subsystem control. Furthermore, the [MS B012 can

generate subsystem control signals for other boards. The system service signals are

organized in such a way that, another boards can be daisy-chained by using Up and Down

pins on P2. The logic here is same as it is for B004 boards.

The IMS B012 has a six-way DEL switch (SW 1) located between P1 and P2.

Each of the six switches make up SW I controls one signal on the board. When a switch is

on, the signal is low and when the switch is off, the signal is high. So, the board link speed

can be set to either 10 Mbits/s or 20 Mbits/s with these switches.

49

(1) PI Connections. Connector P1 has three rows of 32 pins. All the pins in

row "a' are connected to the ground. All the pins in row 'b" are link inputs and all the pins

in row "c" are link outputs. At each of the 32 positions along Pl, the three pins from rows

a, b and c carry one link. These signals may be connected to devices with link ports in any

way the user desires.

The link connections on connector P1 are intended mainly for

communication between the IMS B012 and other boards in a card cage. However, it is also

possible to use these P1 links and the IMS C004 link switches to switch link connections

for an external system.

(2) P2 Connections. If the IMS BO12 is to be used in an JNMOS ITEM card

cage, the ITEM supplies power and has a built-in back-to-back connector which allows link

and reset cables to be connected to P2. Figure 4.13 shows the back-to-back connector pins

as viewed from the rear, i.e. looking towards the pins. The boxes represent plugged-in

cables. A good 5V power supply must be connected to the appropriate pins on P2.

[Power
* 0 0

Fl PlpeThUl
PipeH ead S 0 I

* . o1 . ' Sloto0, LInk 0

Config Up II~ I!U 0)
oLi(ConfigDown

Link Connections

from3 KX Subsystem

F'igure 4.13: View of Back-to-back Connector Pins for B012

50

(3) IMS B012 as a Slave to a Master Controller. In a standard configuration

where the IMS B012 is connected to a master-control system such as an [MS B004,

PipeHead and ConfigUp links would be connected to two links on the host system, with

"Up" system control port connected to the "Subsystem" port of the host (see Figure 4.14).

Link 2 PipeHead PipeTstl

Link 1 Conflg Up..

HOST 4 LU IMS B012

-Subsystem Up _

Figure 4.14: The IMS B012 Board as a Slave

(4) IMS D012 as a System Master. If a TRAM with "subsystem" capability

is installed in slot 0 then the [MS B012 can act in a stand-alone or master role. With switch

6 (on six-way DIL switch) off, the system control to the other modules on the board and the

"Down" system control pins on P2 are driven from the subsystem pins on the TRAM in slot

0.

3. Our Implementation

The steps for our implementation can be summarized as follows:

- To disable T414 transputer on the B004 board inside the PC host.

- To set up a remote tram holder and to place our root transputer on it.

- To connect Sun SPARC Station which has an HSI/SBus to the remote tram

holder.

51

- To place 16 T805 transputers on a B012 board and to connect B012 board to

the remote tram holder and B004.

- To set the link speed as 10 Mbits/second.

(1) Disabling the T414 Transputer on the B004 Board. As we have seen in

the section which is related with B004 board, oily T414 transputer can be used as root

transputer on a B004 board and we can have a total of 2Mbytes RAM. But for our

application, with a purpose of having more memory and speed, it was decided to use a 1805

transputer as root transputer with a total of 4Mbytes RAM, namely an ALTA CTRAM-25-

4F. So, the T414 transputer on the board, had to be disabled.

To disable the T414 transputer oin the B004 board, two connections were

made between two different pin pairs on the edge connector. These connections are shown

in Figure 4.15.

(2) Setting Up the ALTA Remote Tram Holer. After disabling the T414

transputer, an ALTA CTRAM-25 4F which is actually a 25Mhz T805 transputer and

4Mbytes DRAM, was placed on slot 0 of the remote tram holder. So, this transputer became

the root transputer.

Since a Sun SPARC Station, a B004 board and a B012 board connections

were planned for the remote train holder, each of them had to be taken care of separately

because of the different requirements.

The HSI/SBus converts the Sun SPARC Station's parallel data signals to

serial data signals for the transputer links. The voltage for the produced signal varies

between -15 and + 15 AC. But, transputers require 5V DC voltage. This voltage conversion

for the signals is normally done by the converter on the remote tram holder if the jumpers

are used in the P8 Configuration Area. So, two jumpers were used in the P8 Configuration

Area for the link between Sun SPARC Station and remote tram holder to allow the

necessary conversion and to assign Link 3 of the root transputer to the Sun SPARC Station

(see Figure 4.16).

52

Pin b a

1 GND NC

2 (mbmsng (missing)
Aum~4 - 3 PCLinkOut NC

TU md 4 PCLhk~n NC
Tsao hl0 5 GNID NC

6 NotLink NC
7 GND GNT)
8 (missing) (missing)
9 LinkOut 0 LizkOut 1
10 Linkln 0 Linkln 1
11 GNID GND

12 (gap) (gap)
13 GND GND
14 (missing) (missing)
15 LinkOut 2 LinkOut 3
16 Linklu 2 Lunkln 3
17 GND GND

is (gap) (gap)
19 (gap) (gap)
20 (gap) (gmp)
21 (gap) (gap)

22 PCNotReset SubsystemNotReset

-023 PCNotAnalyue SubsystemNotAmalyse
TO RMU4E 24 PCNotError SubsystemNotErro

Tram H ler
Up 25 GNID GND(miling)

26 (missing) (missing)
27 NotSystem fNC
28 UpNotReset DownNotReset
29 UpNotAnalyse DowuNotAnalyse
30 UpNotError DowuNotEvrro
31 GNID GND(misulng)
32 GND(missing) GND(missing)

Figure 4.15: The B004 Board Edge Connector Pinout After Modification

53

'110000 10
0 03 Jumpers for Link 3

Two wires for --
Link 2 X2 (3 3 () (X3

32 00 00 0 0 33,13

Two wires for 0 0 0 0 20
Link 1 12m 0 0 ý ý Two wires for

31 00 O0 0Link 0

22 00 0 0 23

Figure 4.16: Remote Tram Holder P8 Configuration Area After
Jumpering

Because the PC's parallel data signals are converted to serial data signals

for the wransputer links by the C002 Link Adaptor on the B004 board, we didn't need the

conversion which was done for the Sun SPARC Station signals. Then, the other 3 links

Link 0, Link 1 and Link 2 of the root transputer had to be connected to the PC and B012

board directly, without using jumpers in the P8 Configuration Area. But, the modular

connectors Pl-P6 (Pl-P4 f:.,- transputer links, P5 and P6 for system services) have

originally AT&T 41 L/R series of drivers. So, those three links and UP and DOWN system

services were carried to a connector which was located at the back of the remote tram

holder and which had drivers for transputer link cables and for system service cables. For

carrying links, two wires were used, one ior LinkOut and one for LinkIn signal (see Figure

4.16). For carrying system services, three wires were used, one for Analyze, one for Reset

and one for Error signal. Figure 4.17 shows the connections made inside the remote tran

holder.

54

Link In U~ak OtPS CONFIGURATION AE

X2 Ru u

Aaaiyz Analyze

Link Out Link in Link Out LUnk In .Eo ~

IM~

.L ik

Gmun

Link 0 Link 1 Link 2 Up Down

Figure 4.17: The Connections Made Inside the Remote TM am Holder

After the connections were made inside the remote tram holder, the 16

CTRAMs were placed on the BO 12 board and 16 T805-20 MHz transputers were placed on

these CTRAMs.

The fixed hardware configuration for all the transputers in if c nezwork can

be checked with the program named "check". This program runs in PC Host. Figu~e 4.1 -S

55

shows the output of that "check" program for our applicationI and Figure 4.19 shows the

physical view of our current fixed hardware configuration that we have for our transputers.

We will see how a parallel application is created for a multi-transputer system with a fixed

hardware configuration in the software part of this chapter.

"Transputer# LINK LINK 1 LINK 2 LINK 3

0 HOST 1:1 2:2 -

1 - 0:1 3:1 -

2 - 4:2 0:2 -

3 - 1:2 5:1 -

4 - 6:2 2:1 -

5 - 3:2 7:i

6 - 8:2 4:1

7 - 5:2 9:1

8 - 10:2 6:1

9 - 7:2 11:1

10 - 12:2 8:1

II - 9:2 13:1

12 - 14:2 10:1

13 - 11:2 15:1

14 - 16:2 12:1

15 - 13:2 16:1

16 - 15:2 14:1

Figure 4.18: The Output of "Check" Program for Our Application

1. For example, Figure 4.18 first row shows the following connectons for Transputer* 0 (root): Its
Link 0 to Host, its Link I to Link I of Transputer# I and its Link 2 to Link 2 of TransputerW 2.

56

HOST SUN SPARC

oRISISANP R 0

ITRANSPUTER3I TRANSPUTER 2
1 Ol117

! - 2

5RNPE 3 FTRANSPUTER6 1
1-T!, I 1

TRANSPUTER S TRANSPUTER8

ITR.ANSPLTFER 7 [TRANSPUTER 10
1 12

TRANSPUTER9 TRANSPUTER 10

TRANSP1TER 13 TRANSPUTER14

TRANSPUTERI 215TAN

Figure 4.19: The Physical View of the Fixed Hardware Configuration

57

And finally we made the connections for Sun SPARC Station, B004

board, B012 board and remote tram holder as shown in Figure 4.20 Figure 4.21 and Figure

4.22 (for B004, refer to Figure 4.15).

The slot 0 link 0 on the B012 board usually needs to be connected to IMS

C004s. This standard configuration requires a connection to be made via P2. A single

connector assembly (termed the "yellow link jumper plug") are used for this purpose. The

position of the jumper is shown in Figure 4.22.

Facing the back of the Sun SPARC Station

LINK0 LINKI LINK2 LINK3 DOWN UP

"b Telephone Cable

Facing the front of the Remote Tram Holder

LINKO LINKI LINK2 LINK3 DOWN UPI

Figure 4.20: The Connection Between Sun SPARC Station and Remote
Tram Holder

58

(3) Se.inu Up t• Link Speed Because of the B004 board's speed

limitation, we set up the link speed as 10 Mbits/sec. To set up link speed for the remote tram

holder, we connected the juniper JI with the center position and the position labelled "10".

For the B012 board, we set the DEL switches for links to operate at 10 Mbits/sec.

The link speed set up for the Sun SPARC Station is made by running an

independent program, before running the real application program. We will mention about

it in the softwiare section of this chapter.

G ad Uh i Gr k I lk 2Do" Up R

I A I /iFacind the back of the Remote Tram Holdet

10001 __SID _m__0001 99

To B004 Board To B012 Board To B012 Board TO 7b
B012 Board B004 Board

Figure 4.21: The Connections From the Back of Remote Tram Holder

59

-I-- power

pipehead pipe"

TO REMOTE TRMMT REMOTE TRAM
HOLDER LINK I _.HOLDER LNK Z

ground ground

siot01iakoutl - -ISlinkout2

slot0Uinklnl d"15UnkLnA
ground und

_-----__ - slot 0, link 0

Up S I4., Lhk 0
wWO "ydbh IM

TO REMOTE TRAM
DOWN -

•i UI
not Up Reseto

mnot Up Analyze__ _ _ _ _ _ _ _ _ _ _ _ _

not Up Error

Figure 4.22: The Connections from the Back of B012 Board

60

B. SOFTWARE

1. General

The elements of the system and their functionalities from the software side of

view is shown in Figure 4.23.

The main processes can be summarized in general as follows:

- The link operations between Sun SPARC Station and Remote Tram Holder and

setting the link speed as 10 Mbits/sec.

- Loading the height data of the selected terrain from Pegasus Database to the

CTRAMs.

- LOS calculation between the start and goal points which are sent to Sun SPARC

Station by a server which represents JANUS.

- Sending the result back to the server from which the LOS calculation request is

made.

- The afserver task on PC.

a Installing HSI/Bus and Selling the Link Speed

As we have seen in the hardware part of this chapter, the HSI/Bus is a high-

speed interface between the SBus found on a Sun SPARC Station and transputers and it

provides link operations between them. [Ref.20J gives all the detailed information for

installing and usage.

The program which sets up the link speed between Sun SPARC Station and

Remote Tram Holder was supplied by ALTA Technology Corporation upon the request of

us. The link speed should be 10 Mbits/sec before executing the main program because of

the .speed limitation of the PC host.

61

SSERVER for oLOSa. ' ._, ...

frma PEGASUS DATABASE- STATION

.SPEED SETTING,

LOS RESULT DATA LOADING
from to CTRAMs,

DAAASE TRANSPUTERS LOS REQUEST

TRANSPUTERS

Figure 4.23: The Elements of the System from Software Side of View

b. Our Procensor Farm Application

Three things must be written to create a processor farm application

[Ref. 12:p. 77J:

1. A master task to split up the job into the independent work packets, i.e. sub-

jobs.

2. A worker task, which is automatically copied to each node of the network

of transputers.

3. A configuration file, describing the memory requirements and other

attributes of the tasks.

62

(1) Maser, Worker andRouter Tasks. There is only one copy oQ 6i1, uster

task, and this is placed on the root transputer. A copy of the worker task is placed on every

transputer in the network.

Special procedures are included in the run-time libraries of the Parallel

languages to enable the communication between the master and the workers. They work in

conjunction with another task, called the router.

Normally, router task is not written by the user, but is automatically added

to the processor farm. When the master has a sub-job to be done, it calls a procedure which

gives details of the sub-job to the router. The router then finds a worker somewhere in the

network which is currently idle, and sends the work packet to it. The worker task then

processes the work packet, and when it has finished, it calls a procedure to send the result

packet back to the router, which returns it to the master.

For a normal processor farm application:

- A worker task contains three sequences: read a packet, process it, send

back a result packet (i.e. input, process, output).

- Every worker should get the same input.

- For every cycle those three sequences start from the beginning.

But, for our application:

- Since we have a big amount of map data, we should divide it to little

portions and load them to different CrRAMs at a time. Our map is too big to be loaded to

a CTRAM. So every worker has different input.

- If we had used the same three sequences as mentioned above, we would

have to load the whole data for every cycle. This would be too time consuming. So, we

make first an initialization by loading the map data. Then, we send the point information to

workers as input for LOS calculation, they process it and return the LOS result back. And

for the second LOS request we don't have to make initialization again. Just the second part

that includes input, process and output sequences repeats.

63

Because of the differences which we just described, routing in our

application is done with the programs written by us instead of being done automatically.

The source files for master, worker and router tasks are listed in Appendix B.

(2) Configuration File. The configuration file [Ref. 12:p. 38] iescribes the

system to be built. It lists all the physical processors in the system, the wires connecting

them, the tasks to be loaded into the system and their logical interconnections. In this

section of the Chapter IV we explained configuration file giving the examples from our

actual configuration file "btestl8O.cfg" which is listed in Appendix B.

The first thing the configuration needs to describe is the hardware

configuration between the processors. The following configuration file lines declares the

processor in the host PC, the processor in the Sun SPARC station and three transputers

including the root transputer and describes the actual physical cables between these

processors for our application:

processor host
processor sun type=pc
processor root
processor pl
processor p1l

wire ? root[0] host[0]
wire ? root[l] pl[l]
wire ? root[2] p2[2]
wire ? root[3] sun[0]
wire ? p1[21 p11[l]

The PROCESSOR statement declares a physical processor. Every

processor in the physical network must be declared, including the host processor from

which the network is to be bootstrapped 2 (normally an IBM PC-type machine). The

configurer assumes that the processor named host is the host processor. In the case of an

2. The linker program, linkt, normally produces an executable image fi!e prefixed by a short
bootstrap program which allows the the afserver to load the image into an empty transputer, the
bootstrap initialises the transputer and reads in the rest of the image file.

64

IBM PC host processor, the host will usually be executing the afserver program when the

network is loaded, simply because that is the program which loads the rest of the network.

It is necessary to be able to specify the afserver task to the configurer so that its ports can

be connected to ports in user tasks, but without forcing the configurer to attempt to

bootstrap the IBM PC. Similarly, some processors in the network might be set to bootstrap

from ROM rather than from link. A processor is declared to the configurer as having

already been bootstrapped by means of the "type" attribute. The default for the host is that

it is "type=pc" already. For our application, the Sun SPARC station processor was also

described as "type=pc".

The WIRE statement declares a physical wire connecting links on two

physical processors. Each wire supports two connections, one in either direction. The two

link specifiers in the WIRE statement may therefore be interchanged without affecting the

statement's meaning. Each wire is given a name (or '?'can be used instead of a name if the

name will not be referred later). The numbers in the brackets for the WIRE statements are

the link numbers of those processors which are used for connection. The processor

identifiers used in a wire statement must have been declared in a previous PROCESSOR

statement. This is a general rule: all objects in the configuration language (processors,

wires, tasks) must be declared before they are used.

As well as describing the hardware of a system, the configuration file must

contain details of all its software tasks and their interconnections. For eawh concurrently

executing task in the system, the configuration file must contain a TASK statement. The

TASK statement declares a task, which may be either a user-supplied task or one of the

standard tasks provided with the configurer. The following configuration file lines declares

the afserver task, filter task, master task, two router tasks and two worker tasks for our

application:

65

task afserver Ins=1 outs=1
task filter ins=2 outs=2 data=lSk
task master ins=$ outs=$ data=lSk MlIe="tr.commnLb4"

task routerO ins=20 outs=20 data=2k Mlle="router.bi' urgent
task routerl ins=20 outs=20 data=2k file="router.b4" urgent

task workerOG ins=1 outs=l data=275k flle="worker.b4"
task workerOl ins=l outs-l data=275k Mle="worker.b4"

Each task declaration must include an "ins" attribute, which specifies the

number of elements in the task's vector of input ports and an "outs" attribute, which

specifies the number of elements in the task's vector of output ports. The "data" attribute

specifies the amount of memory which a task needs. For example the filter task requires a

minimum of 15 KByte of workspace. A user task for which no memory requirement is

specified gets all the free memory remaining once any other tasks placed on that processor

are loaded. Only one task on each processor can have its memory requirements left

unspecified in this way. The configurer would otherwise have to decide how to split the

remaining memory between several tasks with unspecified requirements: because an even

split is unlikely to be desirable in practice, that is not allowed. The "urgent" attribute

specifies that the task's initial thread is to be started at the urgent priority level. The default

is that the task's initial thread is started at the non-urgent priority level. Thle "file" attribute

specifies the file in which the memory image of the task is to be found. Task image files are

produced by the linker program. The "file" attribute is ignored for the host processor and

for any processor for which the processor attribute "type--pc" has been specified.

The placement of tasks on processors is specified by the PLACE

statement. It determines which processor a particular task is to execute on. Every task must

be placed on some processor. The following configuration file lines describes the

placement of the afserver task, filter task, master task, two of the router tasks and two of

the worker tasks for our application:

66

place afterver host
place filter root
place master root

place routerO root
place workerO0 root

place routerl p1
place workerlO p1

The CONNECT statement establishes a channel between two tasks, by

connecting an output port to an input port. Because channels (unlike wires) are

unidirectional, two CONNECT statements are needed to create channels going in both

directions between two tasks. The following configuration file lines describes the channels

between the afserver task, filter task, master task, two router tasks and one router-one

worker tasks for our application:

connect ? afserver[O] filter[O]
connect ? filter[O] afserver[O]

connect ? filter[l] nmter[l]
connect ? master[l] filter[l)

connect ? master[2J routerO[OJ
connect ? routerO[O] nuster[2J

connect ? routerO~l] routerl[O]
connect ? routerl[O] routerO[1]

connect ? routerO[4J workerOO[O]
connect ? workerOO[OJ routerO[4]

The CONNECT keyword can be followed by an identifier nzming the

connection, but all the configuration statements which declare new identifiers allow a

question mark to be used in place of the identifier being declared. This is useful when there

67

is no need to refer to an object after it has been declared. After the identifier (or question

mark) the output port is coded first, and then the input port is coded.

And, finally the BIND statement allows the contents of a port to be

explicitly set to some literal value. Normally, ports tre only bound by means of the

CONNECT statement: ports left unbound are pointed at unique transputer channel words

so that attempts to send or receive messages through them cause the minimum harm; the

thread causing the attempt to communicate over the unbound port simply pauses

indefinitely rather than causing failure of possibly all threads running on the processor. One

application of the BIND statement is to give a task access to the transputer's external event

mechanism. This appears as a channel word at a specific address. Another application of

the BIND statement is to pass an integer parameter to a user task. We used the first

application and initialized the "input port 4" and "output port 4" of the master task to point

to that channel woi s at the addresses which are shown in the following configuration file

lines:

bind input master[4] value=&8000001C
bind output master[4] value=&8000000C

The configuration files help to create a parallel application for a multi-

transputer system with a fixed hardware configuration. For our -plication, the fixed

hardware configuration was shown in Figure 4.19 of the hardware part of this chapter. Our

configuration file btestl80.cfg is listed in Appendix B and Figure 4.24 shows our multi-

transputer system application i.e. current topology for transputers.

c. Loading the Height Data

The Pegasus Database has all the terrain height data, as we detailed in Chapter

Ill. Because of the memory limitations of CTRAMs (each of them has 4Mbyte RAM), we

can read and load the height data for a limited area at a time.

68

In our application program, we use an 5120 x 2304m. terrain which includes

the training area whose UTM coordinates are 54000 - 59000 WE and 78000 - 80000 SN

and PVDB coordinates are 10692 - 15672 WE and 14096 - 16096 SN. This area was

selected because, its vegetation has the desired characteristics for a tank battle training.

The loading process occurs in two basic steps. First, the data is read by the Sun

SPARC Station from Pegasus Database. and then transferred (loaded) to CTRAMs. Pegasus

Database is accessible through the Phoenix Server which is not a member of our department

Local Area Network. However, the Pegasus Database was mounted through NFS (Network

File System), so the database can be simply accessed by a read function. But, most of the

time is still spent during this read function. The source code which we use for this data

reading is listed in Appendix C.

For the second part of loading process, if we call all data to be loaded to

CTRAMs as map, every CTRAM will have a portion of that map in its own memory after

loading. The speed of this transfer is 10 Mbits/sec and the transfer occurs through the links.

The data are loaded to totally 15 CTRAMs. 14 of them are located on the

B012 board and one of them is the on the Remote Tram Holder. Each CTRAM in our

current system has a 4Mbyte memory. Since the router occupies som,! memory in each of

them, we can load at most 15 blocks (256Kbyte each) to one CTRAM. But, to use as many

transputers as we can for efficient calculation and meanwhile to load those CTRAMs

equally, we use 15 CTRAMs and each of them has 12 blocks. In each (TRAM, 12 blocks

are loaded to 12 different workers. These workers are the smallest portions in which an

LOS calculation occurs. Figure 4.25 shows the map we load at a time and the distribution

of blocks to CTRAMs.

69

WO.KER 1-1241

po 1

WORKERS4. .,1 =T4. 15
RTANSFUTER ROU.ER2

2

0 0

WORKER.S 1-12 2111111M WORKERS!-.12

,o,-5

ROT IIII TRNPM OT 11

Note: represents Hardware Links, 4- represents Software Links

Figure 4.24: Current Topology of the Transputers

70

2304m

TRANSPUTER TRANSPUTER TRANSPUTER TRANSPUTER TRANSPUTER
2 1111 1111111 2111 2111111

WTHR 12 WTH 12 WI1H 12 WITH 12 Wrh 12
BLOCKS BLOCKS BLOCKS BLOCKS BLOCKS

1536m _ _"_ _

TRANSPUTER TRANSPUTER TRANSPLrIR TRANSPUTER TRANSPLrER
1 111 111111 211 211111

WrM 12 WrIT 12 WrM 12 wM 12 W1M 12
BLOCKS BLOCKS BLOCKS BLOCKS BLOCKS

768m -__ __ _ _ _-__ _ _ _ _-__ _

ROOT TRANSPUTER TRANSPIJTER TRANSPUTER TRANSPUTER
TRANSPUTER 11 11111 21 21111

WITh 12 WrrM 12 WITH 12 WTH 12 WITHr12
BLOCKS BLOCKS BLOCKS BLOCKS BLOCKS

0 1024m. 2048m. 3072m. 4096m. 5120m.

Figure 4.25: The Map Siz*..',rd the Distribution of Blocks to CTRAMs

A LOS Calculation *

The LOS calculation request between two points is made by a server that

represents JANUS system. The information about the start and goal points is sent to Sun

SPARC Station using the link communication established between them (the program

which is used for this purpose is listed in Appendix A as clientmain.C). Then, this

information is broadcasted by the Sun1 SPARC Station to the transputers after rceiving the

point information.

The LOS calculation is made in each of the transputers. Since each transputer

knows the borders of iL.S map portion, the transputers whose map portions don't include the

coordinates of those tv o points and of the line between them returns "0" as an answer

automatically. The transputers whose map portions include the coordinates of those two

points and of the line between them make LOS calculations for their map portions, and

return "0" if LOS exists or "1" otherwise. Then all the answers from transputers are added,

71

and if the total is "0", that means LOS exists between them, but if the total is greater than

or equal to "1", that means LOS doesn't exist between them. This answer is sent to the

server that represents JANUS by way of Sun SPARC Station.

e. The Afserver Trak on Host

The afserver task is an ordinary MS-DOS executable (.exe) file that runs on

the PC. It loads executable .b4 files into the transputer and also acts as a file server,

handling 1/0 requests made by the tiansputer. The afserver and the transputer execute in

p: -alel and communicate via an Inmos link. The messages sent to the afserver are normally

generated by the Parai, "-,-+ run-time library. It converts I/O operations into messages

requesting the afserver to perform MS-DOS operations and then waits for the afserver to

reply.

In principle, the afsrver task could be directly connected to the user program.

In practice, a filter task is interposed between them. The filter runs in parallel with the

afserver and the user task; it simply passes on messages traveling in both directions. The

filter is required because sometimes the messages passed between the user program and the

afserver are only one byte long and the revision chip cannot handle single-byte message

transfers on its hardware links. The filter pads out 1-byte messages to 2 bytes to avoid this

problcm. The connections for afserver and filter tasks can be seen in btestl80.cfg

configuration file which is listed in Appendix B.

72

V. EXPERIMENTAL RESULTS FOR LINE-OF-SIGHT
CALCULATION

A. PERFORMANCE ANALYSIS

When a line-of-sight request is received by our system, the information about start

and goal points is broadcasted to all transputers in the network. Since each transputer has

height data for a different portion of all area. LOS calculations are done only by the

transputers Plong the line between start and goal points. The advantage of parallelism for

our application is that each transputer starts doing LOS calculations at the same time. So,

when we neglect the time spent for communications between transputers, the total LOS

calculation time for all transputers which participate the calculation should be equal to the

time spent by the transputer which does maximum LOS calculations.

The most important factor for measuring performance increase with our parallel

system is the distance between the two points which are subjects to LOS calculation. If the

distance between those two points is too short and only cne transputer does the calculation,

then this is the worst case and we have no performance gain when we compare with a one

processor system. If the distance between those two points is maximum, which is equal to

the diagonal of the simulation area, then this is th• best case and the performance gain is

Jr where n represents the number of processors (transputers).

So, ideally the expected average gain after some number of consecutive LOS

calculations will be:

EXPECTED AVERAGE GAIN (Eq 5.1)
2

Arnd the expected average utility of the system will be:

EXPECTED AVERAGE SYSTEM UTILITY a -I-/n - 5-.2
2

(E752

73

Since we used 15 transputers in our application, by using Eq 5.1 and Eq 5.2 we can

say that the expected average gain of our system is ((,I5) /2) - 1.936 and the expected

average system utility is (I/(2,,rf5)) - 0.129.

B. THE RESUITS

In order to test our transputer implementation of line-of-sight calculation, we had to

run our program such that all calculations would be done by one transputer. Then we could

directly make comparison and see the improvement. But this could be possible only if the

points between which the LOS calculation was required were inside the map borders of that

transputer module. Since CTRAMs had approximately 4 Mbyte of limited available

memory and the total training area required approximately 46 Mbyte memory, it was

impossible to do timing testing with one transputer. Then, we decided to use another Sun

SPARC station1 with a large memory to hold all training area data in its memory. We made

a modification to our application programs to run them on that Sun station as being a non-

transputer or a non-parallel version. So, every LOS calculation was done by a single

processor whatever the distance between start and goal points were. Then we could test our

implementation by using the scale factor between transputer and that Sun station which will

be described below.

We used two different start and goal point pairs for testing. The height values for both

pairs were entered as big numbers, so we were sure that there was line-of-sight between

start and goal points. This was important to provide a full calculation time. Because, the

LOS calculation algorithm stops and returns the answer when a bigger height data is

encountered before reaching to the end point. T'T is could take a very short time. But, when

there is line-of-sight between two points, this means every data on the line is checked and

a full time LOS calculation occurs.

i. The Sun station we used was a SPARCsystem 630MP Model 120 with 128 Mbytes memory and
two 40 MHz SPARC2 pfocessors. Its performance was 25 MIPS and 4 MFLOPS for our
application. This performance is almost twice of the perfotmance of a SPARCstationl which
features 20 Mhz clock speed. 12 MIPS and 2.5 MFOPS.

74

For the first pair, the distance between start and goal points were selected such that

the coordinates of the points remained inside the borders of one uansputer module. The

purpose here was to allow only one transputer to do LOS calculation in our transputer

implementation and to get one transputer LOS calculation time. Meanwhile we used the

same points to get the Sun station LOS calculation time. These results2 are shown in Table

5.1 and Table 5.2. The comparison between two calculation times gave us the scale factor

between transputer and Sun station:

SCALE FACTOR a TRIME1 - 1.117
SUNTIMEI

For the second pair, the distance between start and goal points were selected as

maximum (as the diagonal of the area). The purpose here was to allow as many transputers

as we could to do LOS calculation in our transputer implementation. We also used the same

points to get the Sun station LOS calculation time for a maximum distance. These results3

are shown in Table 5.3 and Table 5.4. Then, we simulated a transputer with enough

memory to hold all map data by using the SCALE FACTOR, named that simulated time as

SIMTRTIME2 and found the SPEEDUP RATIO for the best case of our implementation:

SIMTRTIME2 - SCALE FACTORxSUNTIME2 - 18.956

SPEEDUP RATIO - SIMTRTlME2 = 2.581
TRI IME2

2. These timing results ate for 100 consecutive LOS calculations of each point.
3. These timing results am for 100 consecutive LOS calculations of each point.

75

TABLE 5.1: THE TIMING RESULTS OF TRANSPUTER VERSION FOR SHORT
DISTANCE (LIMITED TO ONE TRANSPUIER)

TEST START POINT PWDS END POINT PVDB LOS TIME (W)
NO COORDINATE COORDINATE RESULT

1 10672, 14096 11695, 14683 0 5.995

2 10672, 14096 11695, 1468, 0 5.983

3 10672, 14096 11695, 14683 0 5.974

AVERAGE TIME - TRTIME1 -5.984

TABLE 5.2: THE TIMING RESULTS OF NON-PARALLEL VERSION
(SUN STATION VERSION) FOR SHORT DISTANCE

TEST START POINT PVDB END POINT PVDB LOS TIME (see)
NO COORDINATE COORDINATE RESULT

1 10672, 14096 11695, 14683 0 5.250
2 10672, 14096 11695, 14683 0 5.935

3 10672, 14096 11695, 14683 0 4.877

AVERAGE TIM E SUNTIMEI 5.354

76

TABLE 5.3: THE TIMING RESULTS OF TRANSPUTER VERSION
FOR MAXIMUM DISTANCE

TEr START POINT PVDB END POINT PVDB LOS TIME (see)

NO COORDINATE COORD INATE RESULT

1 10672, 14096 15672,16096 0 7.337

2 10672, 14096 15672, 16096 0 7.356

3 10672, 14096 15672, 16096 0 7.337

AVERAGE TIME = TRT5IE2 = 7.343

TABLE 5.4: THE TIMING RESULTS OF NON-PARALLEL VERSION

(SUN STATION VERSION) FOR MAXIMUM DISTANCE

TEST START POINT PVDB END POINT PVDB LOS TIME (sec)
NO COORDINATE COORDINATE RESULT

10672,14096 15672,16096 0 17.0281

10672, 14096 15672, 16096 0 17.226

10672, 14096 15672, 16096 0 16.661

AVERAGE TIME = SUNTIME2 16.971

77

The communication overhead slowed down the processing time of transputers. The

ratio between the expected best case gain which was rn and the SPEEDUP RATIO showed

us the maximum communication overhead between the u'ansputers. We found that we had

33.3 percent of communication overhead as a maximum value for our system:

MAXIMUM COMMUNICATION OVERHEAD - _(SPEEDUP RATIO) a 0.333

The next step was to determine the average gain and the average communication

overhead for the system. First, we had to find the average LOS calculation times for both

transputers and the Sun station to do that. We kept the lower left comer of the map as the

start point and used a random number generator to generate 50 different goal points for

LOS calculations. We used these 50 pairs of points for our transputer system and for the

Sun station. The results4 were as follows:

AVERAGE LOS CALCULATION TIME FOR TRANSPUTERS n 6.541sec

AVERAGE LOS CALCULATION FOR SUN STATION - 8.89sec

Then, by using these two average tirne values and the SCALE FACTOR, we found

the AVERAGE GAIN:

AVERAGE GAIN . 8.89xSCALE FACTOR , 1.518
6.541

4. These timing results an forlOO consecutive LOS calculations for each 50 points.

78

And. the comparison of EXPECTED AVERAGE GAIN which was (,,)/2 and the

AVERAGE GAIN gave us the average communication overhead between the transputers.

We found that we had about 21.5 percent of communication overhead as an average value

for our system:

AVERAGE COMMUNICATION OVERHEAD= I- (AVERAGE GAIN , 0.215

Finally, we calculated the average system utility for our application:

AVERAGE SYSTEM UTIL.TY n AVERAGE GAIN = 0.1012
15

79

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis was an effort to improve Janus combat simulation model in a distributed

memory and computing environment using transputers and PEGASUS 1-meter resolution

database. We have shown that line-of-sight (LOS) calculation can be done using a multi

transputer system with some modifications in the processor farming idea.

Due to the memory limitations placed on us by the Sun SPARC station1 that we used

in our application, we had to place 12 worker tasks on each transputer in the network. The

number of worker tasks could be less only if the Sun SPARC station could keep bigger map

data in its memory during each data loading process to the transputers. Because of the big

number of worker tasks, we had a high communication overhead which affected the

performance of our application.

Although the performance increase is less than the expected values, the timing results

have shown that further significant improvements can be provided for LOS calculation

time with faster transputers and a Sun SPARC station that has more memory.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

The further research opportunities can be classified under the following main topics:

1. Connection To Janus

In ideal conditions, the line-of-sight calculation requests should be made by Janus

system itself and the start and goal point information should be provided to Sun SPARC

stationi. But Janus is not available in NPS Computer Science Department yet. After the

I. The Sun SPARC station in our applicaion (see Figue 4.23) is a SPARCstation IPX with 16
MBytes memory.

80

completion of setting up the Janus in our department, the future work will be providing the

connections between our application and the Janus system and make them work together.

2. INMOS T9000 Transputers

The INMOS T9000 [Ref. 6:p. 351] is the latest member of the transputer family.

It is designed to provide far higher performance and greatly improved communication

facilities. INMOS has used advanced CMOS technology to integrate a 32-bit integer

processor, a 64-bit floating point processor, 16 Kbytes of cache memory, a communications

processor and four high bandwidth serial communications links on a single IMS T9000

chip. The IMS T9000 transputer excels in real-time embedded applications, delivering

exceptional single processor performance and scalable multiprocessor capability. In

addition to executing several instructions each cycle, the number of cycles required to

perform many arithmetic and logical operations has been reduced from previous

transputers by adding extra hardware. Because of its superior characteristics, IMS T9000

should improve our system performance significantly.

3. ALPHA AXP Farm Programming Environment

Alpha AXP Farms which are produced by Digital Equipment Corporation are

another choice for distributed memory parallelism. They also provide tools and libraries for

farms. These AXP Farms use DECchip 21064 (Alpha AXP microprocessor) which is the

fastest microprocessor in the industry [Ref. 6 :p. 351]. DECchip 21064 offers the highest

available performance with a 400 peak operations per millisecond, a cache bandwidth of

3.2 GB/s, controls up to 16 MB cache and a 64-bit design. Therefore we believe that the

applicability of Alpha AXP Farms to our problem can be a future research area.

4. Parallel Programming Support Environments

A parallel programming environment is a collection of tools for automating part

or all of the steps in writing a parallel program [Ref. 6:p. 351]. A variety of environments

and tools have been proposed, prototypes constructed, and a few commercially available

81

systems marketed to parallel programmers. Among these EXPRESS [Ref. 6:p. 3511 and

The HELLOS [Ref. 6:p. 351] are available in our laboratory.

EXPRESS is a collection of routine calls that form a toolbox for writing

distributed-memory parallel programs. The toolbox routines are used as built-in functions

to distribute data among processors and coordinate processors during parallel program

execution. EXPRESS has been implemented on Intel, Mark M, nCUBE, and transputer-

based machines [Ref. 6:p. 351].

The HELIOS Parallel Operating System has been designed to run on parallel

computers. Such computers contain processing units, and fast communication between the

processors. Many such parallel computers are built using uansputers, and Hellos runs on

these machines. However, Helios also runs on parallel computers built using processors

other than transputers.

So, another future research area is to check the applicability of these parallel

programming support environments to our problem and to investigate how much

improvements ticy car provide for us.

82

APPENDIX A - SUN SPARC STATION SOURCE CODE

This appendix contains the source listings of the C++ code developed for the Sun

SPARC station that is used in this thesis. They are stored in files as listed below:

1. link.h

2. hsilink.h

3. loscom.h

4. los.global.h

5. map.h

6. map-.c.h

7. map_s_com.h

8. scomm.h

9. unix_comm.h

10. vector.h

11. map.C

12. map-c.C

13. map_s_com.C

14. s_comm.C

15. vector.C

16. manager.C

17. clientmain.C

83

FH.ENAME........: link.h
AUTIHOR : Dr. Se-Hung KWAK & Cem Ali DUNDAR
DATE : September 1993

DESCRIPTION : Contains the description of link communication functions which are written in C

language.

/ Writes "Count " bytes from "Buffer" to the specified link. "Linkld" is a valid link identifier.

"Timeout" is a non-negative integer representing tenths of a second. A "Timeout" of ze is an infinite
timeout */

extern "C" int WriteLink(int Linkld. char* Buffer. int Count. int Timeout):

/1 Reads "Count" bytes into "Buffer" from the specified link. 0/
extent "C" int ReadLink(int Linkld, char* Buffer. int Count. int Timeout);

/0 Ready the link associated with "Name". /

extern "C" int OpenLink(chaz4 Name):

/0 Closes the active link "Linkld". 0/
extern "C" int CloseLink(int Linkld):

84

FLENAME : hsilink.h

AUTHOR : Dr. Se-Hung KWAK & Cer.n Ali DUM•DAR
DA TE September 1993

DESCRIPTION Header file which provides de necessary library functions for link

communication.

/* @(#) Module: hsilink.h. revision 1.0 6/22 /9
#include <sys/ioccom.h>
#deuine h h /* the h actually means nothing as used here m/

* l/0 controls

sauct 1ISLSETF I

unsigned int op: 16;
uns;gned int val:16;

I:

union HSUIO I
struct HSISETF set;

#define RESET (1)
#define ANALYSE (2)
#define SETrIMMI (3)
#define TESTERROR (4)
#define TESTREAD (5)

#define TESTWRITE (6)

* lOW write instructions to the kernel within the
ioctl command code.

"0/

#define SETFLAGS _lOW(h. I. union HSIJO)

* End of hsilink.h

S-

85

FILB NAME : loscom.h
AUTHOR : Dr. Se-Hung KWAK & Cern Ali DUNDAR
DATE : September 1993

DESCRIPTION : Header fie for two s-ructs. One of them is for information about map and the

other is for information about two points in the area.

#ifndef LOSOCOMH

#define LOSCOMH

#include "vector.h"

/* Contains the lower left corner coordinates, the size and the grid size of map portion which is sent to
tr.v'sputers at a time. /

struu.t MA-_,mO I
int stan_A, 5• :i_ t e-x, size-y;

double grid..s '.

/0 Contains two vectors which have the information of two points between which LOS calculation is

made. *I

struct CMDNFOI

vector start, goal:

#endif LOSCOM_H

86

FILENAME los-global.h
AUTHOR : Dr. Se-Hung KWAK & Cem Ali DUNDAR

DATE September 1993

DESCRIPTION Defines three global values used in the program.

/ Defines that the size of a map portion which is sent to transputers at a time is 256m.x256m. *I
#define MAP_SlZE 256

/0 Defines thia the grid size showing the resolution is Im. /

#define GR.IDSI2E 1.0

/" It is assumed that the beginning and end points of a line in the area are 10m. above the terrain.*/

#define AGENTHEIGHT 10.0

87

FIENAME........: map.h
AUTHOR Se-Hung KWAK & Cer Ali DUNDAR

DATE : September 1993
DESCRIPTION : Header file for the declarations of the map class and the map class functions.

#ffndef MAP_-H

#define MAPH

#include "vector.h"

class map

public:

s-•uct maprep{

int start.x, startry. sizex. size_.y:

double grid-size;

int* data-

int refs.

map tepO Irefs = 1;1

map rep op.

mapO: / Consu uctors /

map(int stan-xjint start.y,int size-x~int size-y.double grid-sizelnt* data);

map(const map& map): / Copy constructor */

map& operator-(const map& map): / Assignment operator /

--mapO:

/4 Gets the lower left conicr coordinates, the size and the grid size information of map. /

int get-start.xO (return p->sta..x:):

int get-start..yO (return p->startny;)}

int get-size.xO I -eturn p->size-x;):

int get-size...yO (return p->sizcy;};

double getLrid sizeO Ireturn p->griJsize,:;

int* get-data(O return p->daw I:

vector tomap-coord(vecor ioc):

int higherjthan(vector& joL):

int terrainjheight(int& grid x, int& grid..y).

int map.,post(int grid.x. int grid_y);

#endif MAP_H

88

FE..ENAME map_c.h
AUTHOR Dr. Se.Hung KWAK & Cen Ali DUNDAR
DATE September 1993

DESCRIPTION Header rfle for the source code which constructs the map portion to be sent to
transputers at a time.

#ifndef MAP-.C-.H
Odeflne MAP-.C-H

#includc "map.h"

class mapsc: public map

public:
map_c(int startx, int swta._y, it size_x. int size_y. double grid-size);
map map-c-tojmapo; /* only xy are used I

#endif MAPQ_H

89

FILENAME map-s_€om.h
AUTHOR Dr. Sc-Hung KWAK & Cem Ali DUNDAR

DATE September 1993

DESCRIPTION Header file for the souce code written for sending the map poiions to

transputers.

#indef MAP-COM

#define MAP...COM

#include "loscom.h"
#include "map.c.h"

#include "s_cornm.h"

class map.sscomr(

MAPFINFO map_info;

public:

maps.comO(;
void mapsend(int n..u, int n..pm, map& map, s._comm& scomm 1); / Sends map portions. /

I:

#endif MAP_CO:M

90

MIENAM ssacmm.h
AUTHOR.......... Dr. Se-Hung KWAK & Cern Ali DUNDAR
DATE............. September 1993
DESCRIPTON..... Header f-tc for the source code which performs the link communication between

SUN station and the transputers.

#inlue "l..... * .. *******e* ***.. *.. .*"* ****** *.

#include "hslink.h"

#ifadcf S_.CMNLH
#define S_.COMM-.H

const in! ROUITERINIT = 1;
const in! SEND - 2;
const int BCASTw 3:
cons! int LISTE-N 4-,
cons! int TERMINATE =5;

clas s...cormm
int ou~link..nwn;
in! in-link~num;.
int out-link;
in! injlink:

public:

8scommO DI;
s_.comm(int out link numi1 int injlink...numl):,
-s...conmmo(CloseLink(outjlirk); CloseLink(injink)J:
int routerjnit(int numm...s int* rs, mnt* unders, int* pins, in! timeout):,
in! send(int dst, int nts. int size, char* buf. int timeout): 1* Plain send.f
int send i(int dst, int nts, in! size, char* buf, int timneout); /* Send integers, 0/
in! bcast..A(int size. char* buif. int timeoutf): 1* Send doubles (byte convert)./
in! listen(int timeout): /. Byte conversion.1
in! terminate(int tmeout):.

/* Conversion functions for little-indian(transputer) and big-indian(SUN) problem. '
void convert4(char bufi1. char* buf2):
void convezjIi..anay(int* bufi, in!' bufl, int size);
void coinivertg(cha&4 buf 1, char* buf2),
void convemt..d..airay(double* buf I. double' bufl, int size).

#endif S..COMM..H

91

FUINAME : unix-comm.h

AUTHOR : Dr. Se-Hung KWAK & Cem Ali DUNTDAR

DA TE : September 1993

DESCRIPTION : Header file for the link communication functions between two SUN Stations.

#detfne SERVERPORTNUMBER 1053
#define CLIENT_PORTNUMBER 1053

P Link communication functions from 'C library" for sender 0/
extern "C" int open_stream._s (int portnnumber); P Opens link *1

extern "C" int send-buf.s(char buf, int size); 10 Sends buffer */

extern "C" int receive,_bufs(cha* but. int* sizep): P Receives buffer 0/
extern "C" int cloe_sueams (void): P Closes link /

P Link communication functions from C library"for receiver. */
extern "C" int open_..seamc (,:h'* hostname, int ponnumber); / Opens link 0/
extern "C" int send.buf.c(char* buf. int size); . Sends buffer 0/
extern "C" int receive_buf.c(cha& but. int* sizep); P Receives buffer '/

exten "C" int ciose_stream_c (void); P Closes link 0/

92

FlIENAME voctor.h
AUTHOR Dr. Se-Hung KWAK & Cern Ali DUNDAR

DATE September 1993
DESCRIPTION Header file for the description of the vector class and vector class operations.

#ifndef VECTOR H

#define VECTOR_H

class vector

double x,yz;

public:

vectorO;
vector(double x l. double yl. double zl);

double getxO I return x- 1;

double get..yO I return y; 1;

double get_zO (return z;);

briend int openaor=(vector vI, vector v2);

friend vector operator+(vector v1, vector v2).

friend vector operator-(vector vI. vector v2);

friend ve-tor operator*(double a. vector vi);

double dotprod(vector vI);

double magnitude(void).

vector normalize(void);

#endif VECTORH

93

FILENAM map.C
AUTHOR Dr. So-Hung KWAJC & Cern Ali DUNDAR,
DATE............. September 1993
DESCRIPTON..... This source code defines the map class functions.

#include 'mnap.h"

map::mapo P~ Costrucwr o/

p, a new mfap...rep;
P-satx= 0; p->swtarty a 0: p->size..x = 0; p->sizejy = 0;

p->grid-size = 0.0;
p->data - 0: # null pointer

map::map(int stan x-int start..yint size x~int size-..ydouble grid.size~int* data) P Constructor1

p, - new mapjýep;
p->stax-X star~x; p- >Staty - staflj:;
pý->size..x usiz~e~x p->size..~y a size~y;
p->grid-size - grid-size;
p->daza = data;

map::map(conkst mnap& map) 1Copy constructor .

map.p->refs.-+;
p, - map.p:.

map& map: :operatorm(const map& map) 1* Assignment operator ~

map.p->refs+e-;
if (--p->refs -W0) 1

delete[] p->dazaz
delete p:,

p 2amap.p;
return *this;

94

map::.-tnapO /*Desmictr0/

if (--(P->refs) - 0)4
deletef] p->daa
delete p;

vector Mapmo.3.map..COOrd(V0Ctr 100

I
vector map~offst(((doublC)p.>ts.x)*p->grid..size

((double)p->staLty)pI>grlcLsi7.0.):
vector oc..wrt-map - lo: map-.offset;

return (k-)cwntmap);

uit map::higherjthan(vc~tor& loc)

int grid-%. = (int) ((boc.geLxO - p->s-xtp-grid..size)/p->gfl&.size):

int gridjy a (irn) ((boc.get...yO - p->sta..yp->grid-size)/>grid...size);

int height w p->daauidjyp->size..x+grid-xj1

return ((double)eaminjleighl(griX~gfld..y) > loc.getjzO);

ant map::terrin~heighl(int& gnidx. int& grid..y)

return map~post(grid..x,grid..y);

int map::map..post(int grid.x. int grid.y)

int index;
/' index = size..y~grid~loc.x + gridjloc.y; ~

index - p>siztx~grid..y + grid...x:

return p->datafindexJ:

95

FELENAME* a-
AUTHOR Dr. Se-Hung KWAK & Cern Ali DUNDAR

DA TE September 1993

DFSCMIPMON : This source code constructs a map portion to be send to transputers at a time.

#include ciosreamn.h>
#include cfstream.h>

#include <stdio.h>
#include "PVG_DEC.W"

#include "PVG_.DEF.IN"

#include <pvdb.h>
#include "rnap..c.h"

/0 Reads one block of terrain data to a buffer and then loads elevation data to data rray of map portion
by using the da=a in the buffer. 0/

map.c::map..c(int stantx. int start.y.int size-x. mt size..y, double grid-size)

int i;

p = new map-rep:

p->start_x - start.xE

p->stw._y a stary;

p->size-x = size.x;

p->sizcy = sizt....,

p->grid-size - gri&..size;
p->daa = new int[size.x*size..y]-,
/* One block of Im. resolution tewrain data is read to a buffer here. */

geterr(RESOL.TION_, startzx. staty, 1);
/0 65536 elevation data is loaded to data array of map portion here./

for (ir.O, i<65536: i4-4+)I
p->datai]=PVDBUNPACKELE(TERRAIN I [1][iJ);

/* Converts map-c class to map class. */
map mapsc::map-c-o-mapO

map mapI (p->stanx,p->stary ,p>sizex.p->size-y,p->grid-size,i)->data);

retum(mapl);

96

FILENAM E : los-com.h

AUTHOR : Dr. Se-Hung KWAK & Cent Ali DUNDAR
DATE : September 1993
DESCRIPTION : Header file for two suucts. One of them is for information about map and the

other is for information about two points in the area.

#ifndef LOSCOMH
#define LOSSOM_H

#include "vector.h"

/ Contains the lower left corner coordinates, the size and the grid size of map portion which is sent to
transputers at a time./

stn,•uc",P INFO(

.-!t s ct _..y, size.x. size-y;
doubb .,', z e;

/' Contains two vectors which have the information of two points between which LOS calculation is
made. */
struct CMD_INFO{

vector start, goal;

}:

#endif L.OS_COM_H

86

FENEAI :os.global.h
AUTHOR Dr. Se-Hung KWAK & Cem Ali DUNDAR
DATE September 1993
DESCRIPTION Defines three global values used in the program.

/ Defines that the size of a map portion which is sent to transputers at a time is 256m.x256m. /
#define MAP_SIZE 256

/ Defnes that the grid size showing the resolution is I m. */
#define GRIDSIZE 1.0

/ It is assumed that the beginning and end points of a line in the area are 10m. above the terrain.*/
#define AGENT.-IHEIGHT 10.0

87

FIENAME: map.h
AUTHOR : Dr. So-Hung KWAK & Cern Ali DUNDAR
DATE : September 1993
DESCRIPTION : Header file for the declarations of the map class and the map class functions.

*ifndef MAP_H

#define MAPH
#include "vector.h"

class map I
public:
smu-ct map-repI

int stmatx, start..y, size x. size.y;

double grid-size,
int* data;
int refs;
mapjrvO {refs- 1.1

map-rep *p;
mapo: /0 Conso actors 0/
map(int start-x~int stamt..y,int sizex,int size.y,double grid-size~int" data);

map(const map& map): / Copy constructor */
map& operator-(const map& map): / Assignment operator */
-mapo:

/0 Gets the lower left comer coordinates, the size and the grid size information of map. '/
int gecstartsxO (return p->stanr;xj}

int get_sat.yO I return p->sarty; };
int gct-size,_xO { return p->size-x:):
int get.size_yO (return p->sizey;I}
double get..gridsizeO (return p->gridsize; I
it* getdataO (return p->data:l:

vector toqmap-coord(vector Ioc):
int higherbthan(vector& boL);
int terrain_height(int& grid.x, int& grid.y);
int map.post(int grid.x, int grid.y):

I:

#endif MAPH

88

FILENAME map-c.h
AUTHOR Dr. Se-Hung KWAK & Cern Ali DUNDAR
DATE September 1993
DESCRIPTION Header fde for the source code which consruucts the map portion to be sent to

transputers at a time.
.SO.e.S**k0QeeeeD*e**eeeSieeseee*e0***e**6****Q*o*o*e**e*a***0*******e**e**e**/

Wndef MAPQC-H
#define MAP..C-.H

#include "•nap.h"

class map.c: public map

public:

mapsc(int statx, int start.y, it size_x, int size_y, double grid-size);
map mapscjojmapO;/" only x,y are used /

I:

#endif MAPC. H

89

•oooo~oi***oo~o~lo*o**oo~o.(J~**o .eoto.oo*.*****.*e* *e.**e. .** * .. **.*..

FILENAM E : map.s-com.h

AUTHOR : Dr. So-Hung KWAK & Cem Ali DUNDAR

DATE : September 1993
DESCRIPTION :Header file for the source code written for sending the map pot-tions to

amsputers.
O*.1**l***.**.Qi**.**..*.[l**.***•**Q*.*.. .* .Q~* e.*. **..*..*.*.*.*.... 11*II t*i)l*)

#ifndef MAP._COM

#define MAP..COM

#include "loscom.h-

#include "map-c.h"

#include "s_comm.h"

class map.ssomI

MAPINFO map-jnfo;

public:

map.s.comO I I;
void mapsend(int n-tr. int n.pro, map& map. scomm& scomm 1); /* Sends map portions. /

1,

#endif MAPCOM

90

FIL~ENAM .l....... s~comm.h
AUTHO R: Dr. Se-Hung)CWAK & Cern Ali DUNDAR
DATE September 1993
DESCRIPTON* Header f, le for the source code which performs the link communication between

SUN station and the b'ansputers.

#icld *..*** .h*** " * ****.******* * * ... *.***** * *.

#include hslink.h"

#ifndef S-CONIM_
#define S-COMI4H

const int ROUTER-241T L.1
consti mt SEND a 2;
const int BCAST -3-,
const int LISTEN -4;
const int TER.MINAT7E =5:,

class s comm(
uit outjlink -nwn;
int inhink-num;.
int out~link;
int in link:-

public:
S..commo 11;
sscomm(int out_lin_numi1. mt in link num I);
-s..coimmo (CloseLink(outjlink); Closel-ink(in link); 1:
int router...nit(int num-trs, int* ts, ilt* unders. int$ prs, int timeout);
int send(int dst. int nts. int size. char* buf, ini timeout): /0 Plain send. 0/
imt send_i(irn dst, int nts, int size, char* buf, int tirmeout); /0 Send integers./
int beast-d(int size, char* buf, int dmeoutf): /0 Send doubles (byte convert). 0/
int listen(int timeout); /0 Byte conversion. 0/
int tenninaze(int timeout);,

/0 Conversion functions for little-indan(transputer) and big-indian(SUN) problem./
void convert4(chaz* bufi, char* buf2);
void convenrt~armay(int* bufl, int* bufl, int size);
void cornvertB(char* buf 1, char* buf2);
void con vet~n..d.array(double* buf 1. double* buf2, int size);

#endif S...COMM..H

91

FIL.ENAME : unix.comm.h
AUTHOR : Dr. Se-Hung KWAK & Cem Ali DUNDAR
DATE : September 1993
DESCRIPTION : Heer file for the link communication functions between two SUN Stations.

#define SERVER PORTNUMBER 1053

#define CLIENT_PORTJNUMBER 1053

/P Link communication functions from "C library" for sender /
extem "C" int open_streams (int pon.number): /0 Opens link /
extern "C' int send bur s(char* buf, int size); /I Sends buffer /
extern "C" int receivebuf.s(cha* buf, int* sizep): /* Receives buffer /
extern "C" int close streams (void); /0 Closes link */

/0 Link communication functions from C library"for receiver. */
extern "C" int open stream c (char* host_name. int port-number); /0 Opens link /
extern "C" int sendbuf c(char* buf, int size); /* Sends buffer */
extern "C" int receive.buf~c(char* buf, int* sizep); /* Receives buffer */
extern "C" int closestreamn.c (void); /* Closes link l

92

/* ***.. .e**.*.**.4**** 0 *0*0 b*so**** 0 e *0 000 so 0*5 ***** S**so5* so 0 .. e

FILENAM vctor.h

AUTHOR : Dr. Se-Hung KWAK & Cern Ali DUNDAR
DATE September 1993

DESCRIPON Header file for the description of the vector class and vector class operations.

#ifndef VECTORkH

#define VECTORH

class vector {

double x.v,74

public:

vec=O:
vector(double x1, dkuble yl. double z1);

double get-xO Ireturn x:i:

double geLtyO Ireturn y j;

double get_zO I return z;);

friend int operaor=(vector vi . vector v2);

friend vector operator+(vector v 1, vector v2);

friend vector operator-(vector v1. vector v2):

friend vertor operator(double a, vector vI):

double dotprod(vector vI):

double magnitude(void);

vector normalihWvoid):

#endif VECTORH

93

FILENAMEE....... map.C
AUTHORR....:..... Dr. So-Hung KWAK & Cen Ali DUNDAR
DATE.............. September 1993
DESCRIPTON This som~e code defines the map class functions.

#include "rap.h"

rnap::map() Constructor/

p z new map .jep;
p->start..x = 0:p->startj = 0; p.>size..x = 0; p->size..y = 0;
p->grid-siz~e - 0.0;
P->daa =O0; llnull pointer

rnap::rnap(int stan~x,ini strt..y.int size..xjinrsize..y~double grid~size~int data) /*Constructor*/

p - new map jep;
p->staftI.. - start-A; p- >sMat..y - any
P->size..x M size ..x P->Siye...y a size-Y;
p->grid..size - grid...size:
p->data = data;

map::map(conrst map& map) P Copy constructor 0/

map.p->refs+-.,
p - map-p:

map& map::operawor-(const map& map) /0 Assignment operator *

map.p->refs:+-.
if (--p->refs-O0) 1
deletea p->-dataz
delete P;

p = map-p;
return *this-.

94

if (..(p->refs) - 0) 1
delctel) P->daw
delete p;

vector rna::tojap-ootd(vacCKV loc)

vector map-offset(((doubl)p->~stýX)*p->grld-size,

vector loc..yn..map -=1cc - map-.offsct
return (kiccwrtmap);

in: map::higherjhan(vactor& loc)

int grid-ýx - (int) (Ooc.get~xo - p-saxp>grid...size)/p.>grih~size);

int grid.y a (int) ((loc.get..yo -p>tny*pp ->rid.. size)/p->gridLsize);

int height -p->dafgri~y~p.>sizex+grid&xJ:
return ((double)tefain~height(grid~x~gflLy) > loc.getczo):

int map::tcmrin...heigifl(int& guid..x. int& gri&y)

return map..post(gnid~xgrid..y),

int map::map..post(int grid..x. int grid..y)

in: index-,

/0 index - sizey~griidoc.x + gr-Idoc.y;/

index w ->s .ex~gnd..y + grid~x;

return p->damlaindex):

95

FILENAYAE jap-c.C

AUTHOR Dr. Se-Hung KWAJC & Cern Ali DUNDAR
DATE September 1993
DFSCkIPTON . Th.. is source code constructs a map portion to be send to transputers at a time.

#include -iostream.h>
#include <fsta'ear.h>

#include tstdio.h>
#include *?VGDECHf
#include "PVG-DEF1N-
#include .cpvdb.h>
#include "map-p.h"

/0 Reads one block of terain data to a buffer and then loads elevation data to data amy of map portion
by using the data in the buffer. 0/
map..c::maps-(int stazx. int start-.y.int size~x, int size~y, double grid-.size)

int i:

p W new map-rep:
p->stazt..x - start-x:

p)->Stam-y Z startT..y
p->size-x W size..x;

p->size-.y = size-..y
p->grid size - grid..size;
p->dam a =new int(size.x~sizc~yJ;
/0 One block of I m. resolution terrain data is read to a buffer here.
getAeff(RESOLUTIONJ1. stazt~x, start, 1);
/0 65536 elevaton data is loaded to data mrry of map portion here. ~
for 0-(irO <65536-, i++)f
p->datali]=PVDB...UNPACK..ELE(TERRLANIN 111i]));

/* Converts map-p class to map class./
map map..c: :mapsj-O...mwp

map maplI(p->star-x,p->stan-y.p->size~x~p->size...y~p->grid~size~lp.>data).
return(map 1);

96

FILENAhM E....... map..s-.coin.C
AUTHOR.......... Dr. Se-Hung KWAK & Cen Ali DUNDAR
DATE............. September 1993
DESCREMTON.....This source code is for sending one map portion to tran sputers through the link

at a time.

#include'"map...s-om.h"
#include .ciosa'eam.h>

void map-s-omn::mapmsed(int n~t. int n..pro, map& map, s-.comm& sý-comm I)

MAP...tFO map-.info, map-infol;,

map..info.swtar.x - map.p->saw~x,
fmap.Jnfcosarw.y - map.p->stany;
map-info.size... - map.p->size-x;
mapjinfo.saze..y - map.p->size..y:
/0 Converts double,

solves tittle...ndian(transputer) big~indian(sun) problem.
sends header,
converts start..x, start-.y. size..x. size-.y ~

s-cormm 1.conver-i-.array((int*)&mapjinfo.(int*)&map..info 1.4):.
double x = map.p->gridLsize;.
double y;
s~comml .convert8((char*)&x. (char)&y);
map..infol.grid.. size - y
scommlI.send(n..y. n...pr, sizeof(map-infol). (char*)&map..info 1.50);
1' Sends real data (integer is 4 chars) '/
s_commlI.send-i(njtr. n..pro. map-iafo.size..x 0map..info.sizc..y *4,(char*)(map.p->data),5O):.

97

FILENAMAE........: spixonm.C
AI.T1OR: Dr. So-Hung)CWAK & Corn Ali DUNDAR
DATEE.............: September 1993
DESCREMTON: Ti&source code is for performing lin communication between SUN station and

transputers. It also has conversion functions for solving the little-
indian(transputer) and biguindian(SUN) problem.

#include ýiosveam.h>
#include "s.Somimh"

10 Opens link. */
s..comm::sscomm(int outjlink~numl1. int in_link_numi1)

out Iir~k~nu = outJink..numl;
in-Iink-numn a in-Unk-.num I.

char link-.stril2;

link_str(Ojmuchaz~out_link_numi);
link..strfI V1]. :
out- ink = OpenLink(link...str):.

if (out_link_num 11- injlinkjiuml1)
linkj cr101. char(in link..num 1);

44k..sWl I I - V
in-link = OpenLink(link~st);)

else
in-link = out-link;

/Does router initialization for ownputers. .
int s~comm::routerjinitgint num-ts, int* trs, int* unders, int* prs. in(timeout)

int code - ROUTTER-DNI;
int Val,
convcrc4((charf)&code, (charz)&val.);
if (WriteLink(out-link. (char")&val. sizoof(int). timeout) < 0)

return -I1;
convert4((char*)&rum-trs, (char*)&val);

98

if (WriteLink(,)utlink, (char)&val, sizeoffint). timeout) < 0)
retwn 1;

mint vals;
vais m new intlnum~rs.Uu;
convert..i..army(trs, vals, numj ;)

if (WriteLink(outjin. (chur)vals. sizeo(int)Onum..ms timeout) < 0)
return -1I;

conven...Lamy(unders. vals, num...u);
if (WriteLink(ouLlink.(chmrlvals. sizaof(int)*nurnjtrs. timeout) < 0)

return -1;
conven...Lamry(prs vals, numu'rs);
if (WriteLink(ou~tink. (cha&)vals. Amef(int)*numjtrs. timeout) < 0)
retur -1;

return 1;

/* PLain sending. No conversion./
int sconim::send(int dst, int nt, int size, char* buf, int timeout)

int code m SEND:
int valk
convert4((cWa)&code. (char*)&val):
if (WriteLink(out linkc, (char*)&vai, sizeof(int), timeout) < 0)

return 0
convert4((cha)&dst, (~cba&)&val):
if (WriteLinik(ou~tink, (char)&val, sizoof(int). timeout) < 0)

return 0.
conveu4((char')&nts. (chw*)&val);.
if (WriteLink(outlink, (char)&vai, sizwoffint), timeout) < 0)

IreAUM0,
convert4((chai)&size. (char*)&val):
if (WriteLlnkk(ou~Link. (char)&val, sizeof(int). timeout) < 0)

return 0.
INo conversion. Send but directly
if (WriteLink(out link, buf, size, timeout) < 0)

return0;
return 1:

1Sends integrs. 0/
int s..comm~sendji(lnt dst. imt nt, int size, chaz4 buf. int dmeout)

int code a SEND;
int val;
convea4((chma4)&code. (chaf*)&val);
if (WriteLiz*(ouLlink. (cha,*)&vul. sizooffint), timeout) < 0)

renir 0;
convat4((uhwu)&dst, (chur)&val);
if (WrimLink(outlinkr. (cha&)&val. sizeof(int). timeout) < 0)

rewna 0;
oonverr4((char*)&nts, (chw*¶&vai);
if (Writelhin(outjlink. (cha&)&val. sizoof~int). timeout) < 0)

mtum &O
convat4((chm)&size. (char*)&val);
if (WriteLink(outjIn. (char*)&vai. sizoof (int), tifmeut) < 0)

return 0:
cliar vals;
yals a flew chartsizj;
convat-L-ahy((in14')buf. (lnt*)vals. sizesizef (int));.
if (Write~lnk(ouLlink. vals, size, timeout) < 0)1

deleteD vals;

else (
deleteD vals;
return 1-,);

/0 Sends doubles. 0/
int s..comnm::bcast-d(int size, char* buf, in: timeout)

irr code - BCAST;.
in: Val;
convert4((char*)&code. (chai*)&val);
if (WriteLink(outjink. (chw*)&val. sizoeof(int). timeout) < 0)

return 0;
convcui4((char*)&size, (char*)&val);
if (WriteLink(outjink. (char*)&val, sizooffint). timneout) < 0)

return 0;
char*' vals;
yaks- new char~sizej;
convert..d..anay((double*)buf. (double*)vals, size/sizeoo(double));

100

if (WriteLink(outjlink. vais, size. timeout) < 0)
return 0-

retun 1;

/0 Reads dhe value coming from tranputers.
int s..comm:listen(int timeout)

int code a LISTEN:
int val. result;
cor:weni4((chur)&,.o&, (char*)&val),
if (WriteLink(ou~ link, (char*)&vaI, slzoof(int). timeout) <0)

return0-

if (ReadLink(ip-jink. (cha)&vaI. simef(intQ. timeout) < 0)
return 0;

convert4((cha)&val.(char)&zesult).
return result;

tin s..comm::terminate(int timeout)

int code.= TERMINATE:
int val;
convert4((chw*)&code, (cbar)&val);
if (WrnteLink(oui~jink, (chaz')&val, sizeoffint), timeout) < 0)

return 0;
return 1;

j* CONVERSION FUNCTIONS FOR LITrLE-INDIAN(rRANSPUTER) AND BIG-INDIAN(SUN)
PR~OBLEM STARTS HERE. */
void sscomm::conven4<chm buf 1, char* buf2)

but2(3] = bufl1[0):
buf2[2J = bufl IlII;

but2[1] w bufl1[2J;
but2[OJ = butl 1(31;,

101

vcpid s-c mu::convemJ..wray~nt' buil, int* buf2. int size)

for (int iu, kicze; i..)
conven4((chaw)(&(ftf (iD).(chw&i(&(buf2[iD));

I

void s~comm::convan8chw* bid 1. chat* buf2)

buf2[71 - bufl[O0],

buf2[6J a buflt 1];
WWI[5 a bufl[2];
but2[4J - bufi [31;
NCO2(] a bufl (4);
bufZ2(2 a bufl(5J:
bur2[11 a bufl[61;
but 2[0J w bufi 17);

void s nimm::convert~d..affay(double* buf 1, double* buf2. it size)

for (mt i-O; ksize; i4..4)
conveulS(char)&(bufl (iD),(charX&(buf2[iJ)));

102

FLBNAM E vectur.C

AUMrO R:......... Dr. Se-Hung KWAJC & Cen Ali DUNDAR
DAM............. September 1993
DESCRIPTON This source code defines the vector class operations.

#include "vector.h"
mnclude -anathih>

vector.:voctoro (X-O.0; YMO-.O Z-0-0;);

vector.:voctow(double x 1, double yl1. double zi1) (xwx I - nyay; zmzlj;)
int operuzoruma(vector v I. vector v2)

retun((vl.x-mv2.x) && (vl.y-wv2.y) && (vl.z-nv2.z));

vector operator+(vector vi1. vector v2)

vector v(vl.xs~v2.x, vl.y+v2.y. vi.z+v2.z);
retrn V;

vector operator-(vector vi1, vector Y2)

vector v(vlI.x-v2.x. v l.y-v2.y. v Lz-v2.z).
return v;

vector operaWo(double a. vector v I)

vector v(a~vi.x, a~vl.y, a*vl.z):,

return V;

double vector::doqprod(vector v2) /s Dot product/

mtmthis.>x~v2.x + this->y~v2.y + this->z~v2.z):.

103

double vecaw.:msgnihtSvold)

vacio. vectcr:,rmonalize6'oid) 1*Vcct noxgnalization1

vacior TImIt;

double mag - (Othis).umagtudeO;

if (mag < 1E-100) i
TCSuh.X a 0.0;
flsulLY a 0.0;
ft$UILZ a 0.00I

elm I
result = (1.0/mnag) (*(this);

I
return(result);

104

FILENANE manager.C
AUTHORR Dr. Se-Hung KWAK & Cern Ali DUNDAR
DAE : September 1993

DESCRIPTION This is the main program. The number of transputers, workem and task

distribution ame defined here. The user is asked to enter the lower left corner
coordinates of the 5120m.x2304m. map area first. Then after loading of the
whole map to transputers, the infonnation about the two points in the area

between which LOS calculation will be made is expected to be entered and sent

from another server via the communication link established between them. This
information then is sent to the transputers and the result is expected from them.
When the result is received, it is sent to the station from which the point

information comes. This procedure can be repeated as many as the user wants.

/0 TiS VERSION OF MANAGER.C IS FOR 15 TRANSPUTERS, THERE ARE 180 WORKERS. 0/

#include <iostream.h>

#include "unixcomm.h"
#include dstream.h>

#include "los-com.h"
#include "map_s_com.h"
#include "los-global.h"
#include "map-c.h-

#define NUM_OF.WORKERS 180 /0 Each transputer has 12 workers. Of

int org..x, org=.y, orgl-x, orgl y;
int xcounter, ycounter. b._x, try;
float info[6];
int size;

ifstream source:
int sum:

float los result:
vector agent(0,0.AGENTJHEIGHT);
double a,bcx~y.z.
int addr - 0:

105

int main(void)

s comm s_co.mm 1(0.0); Y output link and input link
/0 Total number of truansputers. /

const int totauprs= 15;
/0 Total number of workers. "/

const int totLn..lpr 180-,
/0 Names of branspute. /

statil int tM[tWoa..] -
0,1.2,11121,111,1.1121,11.11,111211.111,111}

/0 The number of children for eah transputer for the current topology. /
static int unders[toWd..J] a (2.1.1,1,1,1.1,1.1.1.1.1,0,0};

/0 The number of workers for each transputer. /

staic int prs[tot&l..lps - (12,12.12,12,12.12.12.12.12,12.12.12.12.12.121;

/0 The distribution of workers to transputers. */

static int n__rtotaln...pr] a I
0.0.0,0.0,0.0.0,0o,0,0,o

2.2.2.2.2.2,2.2.2.

21.21.21.21.21.21,21.21.21,21.21.21.

211,211.211,211,211,211.211.211.211.211.21 .21 1,

2111.2111,2111.2111.2111.2111.2111.2111.2111.2111.2111.2111.

11111.11111,11111,1111 1,11111.11111.11111,11111.11111.11111.11111.11111,

211111.211111.211111,211111,

106

/* Names of wokers in each unsuter. /
stalic lii n4t f _n5j..JprJ -(
0.1.2,3.4,5.6,7,8.9,10,11,
0.1,2,3.4,5,6,7,8,9,10.1 1.

0.1,23.4,5,6.7,8,9,10,11.

0,1,2,3,4.5,6,7,8.9.10,11.

0,1,2,3.4,5.6,7,8,9.10,1 1.
0,1,2,3,4,5,6,7,8,9,10,11,
0.1.2,3,4,5,6.7,8,9,10,11,
0,1,2,3.4.5.6,7,8,9,10,11,
0,1,2,3,4,5,6.7,8.9,10,11,

0,1.2a3,4,5,67,8,9,10,1 1.
0,1,2.3.4,5,6.7,8,9,10,11.
0,1,2,3,4,5,6,7,8,9,10.11,
0,1.2,3,4,5,6,7,89,10,11,

0,1.2.3,4,5,6,7,8.9,10,1 1,
0.1,2,3,4.5.6,7,8,9.10,1,1;

s.comm I .leteruinit(totadeprs~pis.wnme,1. 100);

/* User enters the lower left corner coorir&tes of the whole map here. */

cout <«ENTER X COORDINATE FOR ORIGIN: "<<\n',

cin >>org..x;
cout <<"ENTER Y COORDINATE FOR ORIGIN: "<<•n';

cin >>org..y;

for (tr x-0: nrx<5; Utx++)f

for (tr-yu0, try<3; tr..++)I
for (xcountemr-0; x-counter<4; xcounte.r.--){

for (y-countc=O: ycounemr<3; y-counter+.+)

orgixmarLx+(t x*42256)+x..countew256;

org l~rg.y+(Qr.y*3'256)+y counter256;

map.c mapl(orglx, org ly. MAPSIM.MNAP SIZE,GRIDSIZE),

map cjmap;
map.j...corn map~s corn;

/0 Sends map*/
c.map = mapl.ap.m.c-tomapO:

107

* Convasion of map_ class mto map class before sending is done/
if (Addr < toialftFr) I
ma_scorn.mquend(n_trddr,. n-.pr[[adr. c_map, scomm 1);

I
addr++; 0 Determines the worker address for map portion to be sent. 0/

cout<<"12 blocks of elevation dam sent to transputer"
<<&ddr/12<<W.'

cout<<'Each 15 nsputer is loaded with 12 blocks of elevation data &"<<n';
CMDLNFO cmd-info;

cout<«The server is ready to receive the star and goal point information !'

/ The communication link is established between two Sun stations hem and the
information of two points in the area for LOS calculation is received. 1

/I Opens socket on seaver 0/

if (opensfeams(SERVERPORT_.NUMBER) < 0)
cout <<"Error open 'a":

for (;:) I

if (receive._buLs((char*)info,&size) < 0) cout << "Error in receiving \ni;

amdouble(info(0));
b=double(info(I]);
cadouble(info(21);
xkdouble(info[3]);

yudouble(info[4J);
z-double(info[S]);

vector start(ab,c):
start - start + agent:

vector goal(x,y,z):
goal = goal + agent;

108

cmd-jnfoswit n -

cmkjnfo.goa - goal'.
s..conmm 1.bcas~d(sizW((cmd-info),(chwi¶&cmd~info.5O);
sum a s-comml.listen(100);

/* The LOS result will be "0"if LOS exists. or will be "1 if LOS ijom-t~ exist and it will be sent
to the server which represents Janus. .

if (swutmO)
Iojesultmfloaz(sunt/sum);

else
Ios-esultafloat(sum):

cout << Sum is " «< doc <<stun << 'Nn *«<flush;

cout << LOS Result is - << dec << los-esult <<« n << «flush.

send...bufs((char*)&losjesult, sizeof (float)):

s-comm 1 terminaae(SO):

111

FILENAME client-main.C

AUTHOR Dr. Se-Hung KWAK & Cem Ali DUNDAR

DATE October 1993

DESCRIPTION This program runs in a server other than the one in which the main program runs.

The user is asked to enter the information about the two points in the area

between which LOS calculation will be made.This information is sent to the
main server via the communication link established between them. Ideally the

sender is considered to be Janus.After sending the point information, the result

is expected from the main server. When the result is received, it is displayed on

the screen.This procedure can be repeated as many as the user wants.

#include <iostream.h>

#include "unix comm.h"

void main(int argc, char *argv[2])

float a.b,cxyz;

float buf[6];

int size;

float *sum,

if (open-stream-c(argv[1],CLIENTPORTNUMBER) < 0)

cout << "Error open W'n"

for (;;) I

codt << "Enter the x-coordinate of start point :"<<-n";

cin >>;

buf[01=aý

cout << "Enter the y-coordinate of start point :"<"i";

cin >>b.

buf[l)=b;

cout << "Enter the height of start point :"<<i":

cin >>c;

bufQ2]=c;

cout << "Enter the x-coordinate of goal point :"<<'Nn":

110

cm >>x;
bufl31-x;

cout «c "Enter the y-coordinate of goal point :",<.en':
cm >>y;
bufI4l-y;

cout << "Enter the height of start point " i;

cii >>z;
bufl5]=z:

send..buf-((char *)buf.sizeof(floet)*6);
cout << "Two points sent to seivem",

receive-buf-c((char *)buf.&size):
sum -(float *)buf:

cou< «"Result is:"< * sum « "'ii"

cout <<" If you want to continue, type 'y"%\";
char ch,
cm >> ch;,
if (ch = W') break;

close-streamco;

APPENDIX B - HOST COMPUTER (PC) SOURCE CODE

This appendix contains the source listings of the C++ code developed for the host

computer which is a PC that is used in this thesis. They are stored in files as listed below:

1. line.h

2. los_com.h

3. map.h

4. map_crx.h

5. plane.h

6. rout cmd.h

7. router.h

8. router2.h

9. router3.h

10. sJos.h

11. trcomm.h

12. vector.h

13. line.cpp

14. map.cpp

15. map crx.cpp

16. plane.cpp

17. router.cpp

18. routert.cpp

19. router2.cpp

20. router3.cpp

21. sjlos.cpp

22. trcomm.cpp

23. trcommt.cpp

24. vector.cpp

112

25. worker.cpp

26. worker.Ink

27. btestl8O.cfg

113

FILENAME........: tine.h
AUTHOR : Dr. Se-Hung KWAK & Cern Ali DUNDAR
DATE : September 1993
DESCRIPTION : Header file for description of line equation clas and its functions.

ifndef LINE_H
#define LINE_H

#include "vector.h"

class line (= Pt + P2. "

vector start;
vector direction;

public:
lineO 11:
hine(vactor ptl. vector dii);

vector get .starto (return stN1 J;
vector get-directionO (return direction;);

I:

#endif LINE_H

114

FI.ENAME los-com.h

AUTHOR Dr. Se-Hung KWAK & Cern Ai DUNDAR
DATE September 1993
DESCRIPTION Header file for two smuucts. One of them is for information about map and the

other is for information about two points in the area

#ifndef LOS_ COM_ H
#define LOSCOMH

#include "voctcr.h"

to Contains the lower left comer coordinates, the size and the grid size of map portion which is sent to
transputers at a time. 0/
st'uct MAPINFOI

int start_x, starty.. sizejx, size..y:
double gr0.size;

1;

/0 Contains two vectors which have the information of two points between which LOS calculation is
made. */
snuct CMDINFO{

vector stm. goal:

#endif LOS_COM_H

115

FU..BNAM E map.h
ALM rOR: Dr. Se-Hung KWAK & Cern Ali DUNDAR
DA TE.............* September 1993
DESCRIPTON Header file for the declarations of the map class and the map class functions.

Ofifndef MAP-.H
#define MAP..H

#include "vector.h"
class mapI
public:

at uct map-.rep
mnt start..x. start~y. size..x. size...)'
double grid..size;
int' data
int refs-,
map-repo (refsai I-.1

map .. ep *p;
mapo; 1* Consmcwtors 0/
rnap(int sart-x~int starty..yint size-.xjint sizc..y~doublc grid~size~jnt* data),
map(const map& map); /# Copy constructor 'I
map& operatorn(const map& map); /0 Assignment operator/
-inapO;
P Gets thelower leftcomier coordinates.the size and the grid size information of map./
int geLstart..xO I return p->starl..x; I;
in(get..start..yO I(return p->start-y.);

ant get..size..xo (r'azrn p->size..x:);
ant get-sizc..yO (return p.>size-y;I:
double get...ri&sizcO (retuirn p->grid size. I:
int* get..datao I(return p->data:) -

vector to...map-coord(vector loc);
int higherjhan(vector& loc);
int wimi~n..heiglnqint& grid..x. int& grnd..y):,
int map jxst(int gdd&., int gnid..y);

#endi MAP..H

116

FILENAME : map.crx.h
AUTHOR : Dr. So-Hung KWAK & Cem Ali DUNDAR

DATE : September 1993

DESCRIPTON : Header file for the source code which checks whether LOS passes through a map

contained in a transputer.

gifndef MAP_,RXH

#define MAPCRX-_H

#include "plane.h"

#include "map.h"

class mapcrx I
double mapix.rmin, map.y.min. map.x.max. map.y..max:

public:

map_cnr0 I);
map-crx(map map I);

void set-value(map mapl);

int inside.p(vector pi);
int map-crossing(vector pl. vector p2. vector& start. vector& end);

int map-intersect(vector p1, vector p2, vector& start, vectr& end);

1;

Oendif MAPCRX_H

117

FILENAME : plane.h
AUTHOR : Dr. Se-Hung KWAK & Cem Ali DUNDAR
DATE : September 1993

DESCRIPTION : Headne file for description of plane class and its functions.

#ifndef PLANEH

#define PLANEH

#include "vector.h"

#include "line.h"

class plane I

vector unitncmnal; Punit normal vector *

double distance; f .distance from origin /

public:

plar.eO DI;
plane(vector normal, double dist) {

wiinomual a normal.nornalizuO;

distance = dist;
I

/* If line is parallel to a plane, then lel00 is returned /

/0 If line is parallel to a plane and on the plane, this routine also return WeO10. /

f If sta of a line touches a plane without being parallel to the plane, then it will return zero distance 0/

double planedistance(vector velocity. vector position);
int plane-interuecton(line fine, vector& pt. double& distance);

int planelinecross(line linel, vector& pt, double& distance);

I;

#cndif

118

FILENAME routcmd.h

AUTH OR : Dr. Se-Hung KWAK & Cem Ali DUNDAR
DATE September 1993
DESCRWEMON Header file which contains the routing information for use of all routing source

codes.

#ffndef ROUTCMDH

#define ROUT-.CMD-.H

#define ROU'IRBUFLTSIZE 1024

/0 Network definition (actually tree)

maser

routerO -- workers
routerlrouter2
routerl I routerl2 router2l router22 router23

one node can have up to three descendant nodes.
one node can have many workers.

*/

ID number for routerl2 is 1001
ID number for outer123 is 111001
*/

Task number
start from 0!!1! (cf, routers, 0. 1.2. 11.12.13.21.22..)
For example, first task connected router 12 is task 120 and
NTS field in sendrmap is 0.

I/

Port Numbers

0- upper
1,2.3: lower (may none connected)
4.. :tasks

*/

119

f:-,.i mcg frmnat (cmd'mO or 1) .
/* 0 cmd #..of~tasis E..ofjowerjoutcr destination cufntukvel/
/01 3 4 4 16 4 bits0/
/*0 CMD NTS LOW DST CLL

/. send jap message format (cmd-2) */
P 0 CMd ask# ?f? destinatioA ???*/
/*1 2 4 4 16 4 bits*/
/0 0CMD Ni'S ?fl DST ??? 0
P inap-size1
/0 32 0/
/* maupdama
1* variable lengt *

/* bcastjeq message formal (cmd-3) 0/
to 0 cmd size ?7?0/
/01 3 8 20 bits0/
/00 CMD BCS ?'?? 0/
/* BCS size message follows/

/* tenninate message formal (cmd-4)/

/01 3 28 bits*/
/0 0CMD ??? .

1: terminate mnit

2: send map
3: beast reqest (los; request, automatically replied by workcers)
4 : terminate

#dertne START-INIT 0
#define THRMINATE-JNIT 1
#deuine SEND_.MAP 2
Odefime BCASTREQ 3
#define TERMINATE 4

Odeiine ROUI ECMD-MASK 0070000000
*define ROLTTEJ4TS..MASK 0OlOP0000O0
#der=n ROIYFEOW.MASK OxOOFOOOOO

120

#define ROUTE-DSItMASK 0x0O0FFFRO
#define ROUTE-CLL.-MASK OxOOOOOOOF
#define ROLTIFBCS-MASK OwOFFOOOOO

#define ROUIrECmD..SHEFT Ox 1000000
#define ROLflrE..NISSHIFr OxO 1000000

#define ROUTE..LOW..SHIFT OxOO 100000

#define ROU`M.DST...SH1FT 0100000 1
#define ROU7E ILL.SHIFT OxOOOOOO01

#define ROUFE..BCS-.SHIFT 0-I3 100000

/0 Use divides and multiplies inmWa of shifts for spcedf0

#define ROLTIEJ)NPACK-.CMD~n) ((n & ROUTE-CMD..MASK) /ROWrMCMD..SHIFf

#define ROUTEJJNPACK NTS(n) ((n & ROUTENTS...MAK) / ROUrENIS_.SHnF)

fteine ROLUTTyNPACK-.LOW(n) ((n & ROUTE..LOW-MASK) / ROUTE..LOW_.SH]FT

#define ROUTE j)NPACK..DST(n) OnI & ROUTE D-ISTMASK) / ROUTE-.DST..SH]FF
#dtfine ROUIWJJUNPACK..CLL(n) ((n & ROUTECLL_.MASK) / ROUTE...CLJL_.SHXFT)

#definie ROMflJJNACK..BCS(n) ((n & ROUTE.BCS-.MASK) / ROUTE..BCS..SHIF

#define ROUTE PACK-CMD(p,n) pm(,p & (-ROUTECMDMASK)) I (n*ROLJTMCMD..SHFI)

#define ROUTE...ACK)JT(p~n) pw(~p & (-ROUTE..NTSMASK)) I (n*ROUTENTS-.SHIFT)

dfwfie ROUIWPACK..LOW(p.n) p-(p & (-ROUrT'E.LOW_.MASK)) I (n*ROU7E_.LOW...SHMIF)
#defuie ROUTE..PACK..DScT(p~n) p-(p & (-ROUTE..DST..MASK)) I (n*ROUTE_.DST_.SHIMT

#defineC ROUITPACK_.CLL~jp.n) p-(& (-ROUTE..CLLMASK)) I (nOROUTECLL..SHIFT

Odefine ROUrEPACK_.BCS(p,n) pa(p & (-ROUTE..BCSMvASK)) I (n*ROUTEBCS-SHIFT

#endif ROUL-CMD..H

121

FILENAME : rour.h
AUTHOR : Dr. Se-Huig KWAK & Cern Ali DUNDAR

DATE : September 1993

DESCRIPTION : Header file for the source code which performs the muting for the current
topology of ransputer network.

Iindef ROUTERH

define I.OUTER.H

#include <chan.h>

#include "routncmd.h"

Port Numbers

0: upper

1.2.3: lower (may none connected)

4..: tasks

define UPPER-PORT 0

#def'ne FIRST.LOWER_PORTNUMBER 1

#&fine FIRSTTASKPORT..NUMBER 4

class roiter I
int routerjd,

int level:

int has_I-afnode..p;

int lastjlowerport._number,

int lasttask..port number,

CHAN "*in-pots:

int ins:

CHAN "out..pots;

int outs;
int message;

char routerbuf[ROU'ERBUFSIZEI;

public:

router(CHAN inn-ports]Jnt ins, CHAN *out_ports[]jnt outs);

void init(void);

int cmdtype(void).

122

void send mapvoid);
void bcan-jeq(void);
void mJminalevoid):
void answex(void);
void tmas...iapint ponýnumberjint map..size);

#eadif ROUT1lkH

123

FILENAhM outer2b
AUTHOR Dr. Se-Hung KWAK & Cern All DUTNDAR
DA TE............. Septeniber 1993
DBSCRIMfON..... Header file for the source code which perfonns routing between tramsputers.

#Iifdef ROUTIBR2-.H
Odeflne ROUTER2...H

Oaclde& <chan.h>

Naclde "rout_cmd~h"

clans ruter2 (
CHAN **in-jpors;
ill ins-,

CHAN **out-..Pon;
i1W outs;

public:
router2O(1;
router2(CHAN 9n..ports(Jint ins, CHAN *out..jofs~lJint outs);

void routerjn~itnt dts, int low, int ows);
void router~mit-done(void);
void ueaddim dst, int ow, int size, char* but);

void bcast(int size, cbsr* but);
im listen(void);
void terimlnate(vold);

OendMfROUTER2_H

124

FILENAME : router3.h
AUTHOR : Dr. Se-Hung KWAK & Cern Ai DUNDAR

DATE : September 1993

DESCRIMON : Header file for the source code which performs routing in a ransputer.

ifndef ROUrER3_H

#defme ROUTER3_H

#include <chan.h>

#include "rout_rcmd.h"

#define SEND SEND-MAP

#define BCAST BCAST.REQ

/*TERMINATE comes from "rout_cmd.h" '/

class router3

CHAN **in.ports:

int ins;

CHAN **out:.pcws;

int outs;

int message;

int returnvaluc;

public:

router3(CHAN *in..poisl0,int insl, CHAN *out_potts l [],int outsl);-

int cmd_type(iut& size); / return type as well as size of data

void receive(int size, char* buf);

void answer(int value);

void terminaze(void);
I:

#endif ROUT _R3-H

125

FLENAM• : slos.h
AUTHOR : Dr. Se-Hung KWAK & Cem Ali DUNDAR

DATE : September 1993

DESCRIPTION : Header fide for the source code which performs LOS calculations between two

points.

#ifndef SLOSJH

#define SLOSH

#include "vector.h"

#include "map.h"

class sIos I

public:

slosO $)
/ Performs LOS calculations. /

imt do_ssjos(vector start, vector goal. map& mapl);

#endif SLOS_H

126

FIENA ME........ tr..comnm.h
AMYIOR Dr. Se-Hung KWAIC & Cen Ali DUNDAR
DA7E............. September 1993
DESCRIPTION.....Header file for the source code which performs the communication between

SUN staion and transputeus.

#ifndef TR..COMI{.H
Mefine TR..COMM..H

#include <chan.h>
#iniclude "rc'uter2h"

const int ROUTERWINIS = 1;
cons? int SEND-S -2;
const int BCASTS=3;
const int LISTEN..S .4;
const int TERMINATE-.S -5;

class trcomm
router2 router2a,
CHAN **in...pons:
int ins;

CHAN **out..P"r;
int outs:

public:
trscomm(CHAN Oin..portsfl. mnt ins, CHAN *out..pors(J. inh outs)-,

int cmd-typeO); /0 Return type 0/

void routerjnit(void):,
void send(void):.
void bcast(void);
void listen(void):
void tmninate(void):

Nendif TR..COMM...H

127

FIENAME : vctor.h
AU HOR : Dr. Se-Hung KWAK & Cern Ali DUNDAR

DATE : September 1993

DESCRIPTION : Header file for the description of the vector class and vector class opei tions.
*e********************e*********..****.***.*****.*****...*****.*******.*** ******.

#ifndef VECTOR-H

#define VECTOR_H

class vector I
double x,y.z;

public:

vectorO):

vector(double xl, double yl. double z1);

double geLxO (return x;).

double get.yO (return y;};
double getzO I return z;) ;

friend int operator-(vector v 1, vector v2):

friend vector operalor.(vectwr vl, vector v2);

friend vector opeator-(vector vi, vector v2)-

friend vector operuor0(double a. vector vl);

double doqprod(vector vi);

double magnitude(void):

vector normalize(void);
I;

#endif vectot H

128

FL.ENA ME :inecpp
AUTHOR Dr. Se-Hung KWAK & Cem Ali DUNDAR
DATE Septmber 1993
DESCR/ITION This sorce code is for a line oquation.

#include "line.h"

line::line(vector ptl. vector dir)

Sstr a pt1; direction = dir,

129

FILENAME: mapxp
AUTHOR...........: Dr. Se-Hwig KWAK & Cern Ali DUTNDAR
DAIS.............* September 1993
DESCRIPTION: This source code defines the map class functions.

#lnclude "map.hw

map::mapO /* Constructor 0/

p a new map rep;
p->starx - 0; P->star..y -0': P->size...x -0; P->sizejy w0;
p->gnid.size -0.0;

p->daL& '0:11 null pointer

map::map(int srtatx~int stmt.y,int size-iint size..y~double grid..size~int* damn) /0 Construtor I/

p.n new mapjep;
p.>stwtl.. tm -X Uat):->StmLy - iartj;
p->Size..x asize..y; p->Size..y u size-T
p->grid-size = gridj;iz;
p.>data s, dama,

map::mapconst map& map) 1* Copy constructor 0/

map.p.>refs++:
p - map-p;

map& map::operatoru(const map& map) /0 Assignment operator 0/

rnap.p->refs.-a.
if (--p->refs -0)
delete[) p->data:
delete p;

p - map-p;
return *this;

130

map:.-Mapo 1 Demaructor 0/

if (--(p->ref$) - 0)1
deleteD p..>data;
delete p;

I

vector map..offset(((double)p->start~x)*p.>grid..size,
((dotuble)p->sztaz..y)*p.>gid-.size,0);

vector loc..wrk..map a loc - map,.offset;
retumn (Ioc~wrtjnap);

int map::higherjhfan(vector& lcc)

int griWx - (im) ((boc-ge-txO - p->sar.x~p->grid~size)/p->grid_$ize);
int grid-Y - (jiw) ((1oc.get-YO - p.smyp .>gr...siz e)/p.>grid-..ize).
felur(p-damagdd-p->size...x+grid-x] > Ioc.geLzo);

I

int map::rnap.post(int grid .x. int Srid.y)

int index;

index n p>uze.x~grid..y + grid..x:
retun p->dazaindexj;

131

FIENAME :map-..acpp
AUThMOR :Dr. Se-Hung KWAK & Cen Ali DUNDAR
DATE : September 1993
DESCRIMTON . Thi. :Ms source tile checks whether LOS passes through a map contained in a

transputer or not.

#include "map...px.h"

mapscrx::map_=cr(map map 1)

map.Ax.min - double(map1.get-.stan.t.xO) 0 map Lget-grid..sizeO0;
map..y..min - double(Inapl.get~startjo) * mapl.geIg-i&.sizeO:
mapx.mjax - map..x..min + double(mapl.get-.size...xO) 0 mapl.get-.grid.sizeO;
map..y...max - map..yrnin + double(mapl.get-size...yO) 0 map 1.getr.jid-sizc(O:

void map..cr::seLvalue(map mnaptI)

map..x..min a doubke(mapl.get-start.i) 0mapl.get...grid..sizeo;
map..yjnmin a double(mapl~get..startyO) * mapl.get-grid-.sizeO:
map..xjnax a map-xmin + double(map l.get..size..xO) 0 maplI.get-gri&..sizeO);
map~y..max a map..yjnin + 4 uble(mapl.get..size..yO) 0 mapl.getgnVd-.sizeO;

int mapscr%::inside_.p,(vactow pt)

/0 inside..p includes boundary too. 0/
double delta - 0.00005;
if((pt.gr*..xO > map..x...min-delia) && (pLget-xO < map_%_nax+dehta) &&
(pt~getyO > map..y-.min-delta) && (ptget-yO < map..y..,max..delta))
return(l);

else
return(f):

132

int map-c::map.crossing(vactcr pl. vector p2,
vector& sta, vector& end)

vector pxlpx2;

if ((inside_"p(p1))&&(insidejp(p2))) I
start a pl;
end m p2;

rtrn W;}
else I

if (inside..p(pl)) {
map_intmsect(plp2,pxl ,px2);

start- pl;
end m pxl;
remt I;)

else if (inside.p(p2))
start p2:
mapjintersect(p I jp2.px I ,px2);

end= pxl;
retun 1;)

else I
if (map_intersect($,p2.pxp4,x2)) I
start - pxl1

end p2:;

return 1,
else,

return 0;

int map crx::map_intersect(vecwr pl. vector p2. vector& pal. vector& px2)

/ This routine returns two intersection pts: px 1, px2/

/0 If they ae identical. then px I - px2 0/
/0 If3D pts. p1 & p2. ire given, then pxl and px2 are 3D pts "/

.-ector pt, pts(21;
double dist:

133

Vector X...nona(1,OO), Yjicmal(O.lO);

plane plan..x 1(x..normW. -1 .Omnap..x..min);
Plane plm-Ae.z2Xjwnnal, -1.O0map..xjnax);
plane plane..yl(yjlwtTnal, .1.0map...y-min);
plane plane..y2(yjno1Tnal, -1.0 map...y-max);
vector delta w p2 - p 1.
line lznel(pl~p2-pl);

int num m 0
P Thaemwetwo distinct pts
if (jlane..x 1.plane~jneý-oss(tine 1, pt, dist))
if~iadpp)

ptsfnuw.] at

nun*+:
if (paex2planejlinescross(linel1, pt, dist))

if ((inside..p(pt) && nwn && ! (pts(num- I j-pi)) 11 inside...ptf))4

ptstnumi - pt;
num+.+; I

i planejl .planejfife-c-ms(line 1. pt. dist)) I
if ((inside...op) && num && !Qpts~nufn-1J-pt)) 11 inside...p(pt) 4

pts(numl pt
num+.-4:

if (plane..y2plane-line-crosslne I. pt. dist))
if ((insidc..p(pt) && num && (ptstnum.1]u-pt)) I inside...ptp) I

pts[numJ pt:

num44:
if (num - 0)
returfn 0;

else if (num- 1)1

pxlu-pts(OJ:

m~um 1.)
else (
pil - pis[Ol:
px2 - pts[Il
return1)

134

FU.ENAM E plhuw-cpp

AUTHOR Dr. Se-Hung KWAK & Cern Ali DUNDAR

DATE September 1993

DESCREIPION This source code is for plane equations and functions.

#includ "plane.h"

#i."clude "vector.h"

#include cmnah.h>

double plane::plae.._distance (vector velocity, vector position)
I
/0 plane (X-Q)N,,O, line X-P+tA.

t o (Q-P)N/(AN). if A is normalized then t is signed distance.

If t is infinitive, then plane-distance returns NULL.

otherwise, plane-distance returns distance. /

vector A - velocity.noimalize0;

vector N - unit_normal:

double dis - -1.0 " distance:

vector Q a dis 0 N;
vector Q..P - Q - position:

double AN - A.dotprod(N);

double numerator - Q.P.dotirod(N);

if (fabs(AN) < IE-100)
return(1EIO10):

else
return(numerator/AN):

I

int plane::plane_intersection(line linel, vector& pt. double& distance)

vector velocity a line L.get_directionO.nornalizeo;

distance = (Othis).planejdistance(velocity, linel.getstmO);

if (distance< 12100) 1

pt line L.get_startO + distance * velocity;

return 10}

else

return 0;

135

int pbm-:p~anejine~crossIlntine 1. vector& pt, double& dlswnce)

vector velocity w line 1.ge~.directiono.nofmahzc;
distance a(*this).ptane...isuwnce(velocity, linel.geLsthflo);
if ((distance >- 0) && (distanc < line l.get-directionO.magnitudeO)) I

pt a lineI.geLsUArO + distance. * velocity.
retum 1;)

else
return 0.

136

FILENAME: router cpp
AUTHOR : Dr. Se-Hung K" 1'AK & Cen Ali DUNDAR

DATE : September 19%,

DESCRIPTION : This is the main routing source code. It handles routing for the current topology

of bansputer network.

#include 'Youter.h"

#include aLth>

#include <chan.h>

router.:router(CHAN *in. polO[,int insl, CHAN *out..jxwtsl)int outsl)
{

in. ports= in.-ports 1;

ins - insI;

out..JKE1 = ouports I:

outs - outsI;

Imnt next..address(int destination, irn cwrrentjlevel)

return((destination >> (currenilevel * 2)) & W00000003).

void router.:init(void)

/ message format /
/ 0 cmd #..oftasks #ofjlower router destination currentjlevel*/

/* 13 4 4 16 4 bits 0/

/ 0 CMD NTS LOW DST CLL 0/

P cmd I : init (start)

2: terminate init
"0/

for(;;) {

int message:

chanrtin.word(&message.in_0ports(]);

/0 Checks whether to terminate init routine.

This is detected by the first node. 0/

137

if (RtOLTJUNPACK-CMDQNCSSSS) - TERMINA7ENIT)
for (int i-tFIST_..OWER.YORT-NUMBEP, i<-1smlowerpolt-numbcr, i++)
chw..outword(messae~ouUXtsu[iD);
break-,
I/0 If there is no lower routers, then it automatically C~es rot

send anything. 0/

int destination - ROUTE-.UNPACKJT)ST(message);

int culrentLievel a ROUrE..UNPACK..Ca(mesa&qe);
tint nexLchan m nCx~address(destination, currentjlevel):

if (!nextLcha) 1 /0 This is the destination.

routerid a destination; /0 Destination is ID.1
level - culrentjevel;

int num...ofowerjouters a ROUTEJJNACK_.LOW(message)-;

lassjower..por.tnumber a numpf(-ower-jouters + FIRST-LOWER..YORTNUMBER- L.

/ 0.1L. num..of lower..yvuters, taskjXon..../

mnt nunr._of~tsks - ROUTELTNPACK-JTS(message);
last-task-.poxi number - nwn..ofjasks + FIRST-TASK-.PORT..NUMBER- 1,

if (num...oLlower routers !- 0)
has-leaf..node-.p - 1.

else
hasjleaf..node-.p - 0:

else I

message4-+; /Inctuments current -level counter.

chan..out-word(message. out-.portsfnext-chanl);

int router.:cmdjype(void)

chan-in~word(&messae.in_.portsIOl);

remPOUTEUPACK_.CMID(mcssage)).

void router.:bas-map(int pcrtt..nwnber. int map..size)

chan-~out-word(message.out-poils(poNt-flurberJ); 1* Sends header first. 0/

int num-ofpackets - mrap...size / ROUTER-BLYF_..$I + 1.

138

uUt Iast~packLsize a map..size % ROUTERBUFSIZE:
cha..ouLword(map..ssze.outJpan[pon..numberJ); /0 Sends map size. '
while (num..of~pacets>O)
If (nwn..ot..psckets- I)

if (last-.Packet..size > 0)
chan-in-essage(hscjke~sizeouter..buf.w..ports[0J);
chan-outmessge~ast.Packe...izeirOuter.buf,out..Port[POrt-.nwrnberJ): I

else I 1 nothing totransfer/
else (

chanin~message(ROUrER..UF..SIZE.routerbuf~inj~onmu[):

chan~otwmemage(ROUTrERBUFSiZ~outer...buf~out~ports~portjiumber]);

num..of~packets-:

void router.:send-map(void)

int map-..size-,
chanjin.word(&map-.sizejnjxxurt(0J);.

int destination - ROUTE JJNPACK_.DST(message):
/* Two came: This node's task or pass down 1/
int iixt.Shan - nexý_address(destinalion, level);

if(!next-chan)t I f'isisthedestination.*/
16 Gets task number. */

int task-jxxt-nwnber - ROU~rEJJNPACKNTS(message)+FIRSTJTASK-PORT..NUMBER;.

tmns-mapknwpotnbawnbeap.size):
else

trans..map(next-chan~map-.size);

void rouer.:bcast..req(void)

int size - ROUTE JJNPACK-..CS(mesasage):,
chanin-mego(size.route&..buf.in-.ports[0J);
for (int i=F1RST..j.OWERPORTJJUMBER: i<=lastjower..portnu.nuber; i4-+) I
chan out word(measage.out..ports[iJ); /0 Sends down 0/
chan out message(size~router..uf~outjporisf i))

139

for (iwFISTjTASY._PORT-NUMvBER kmbsLtask-bort..number I++)
chwnou~word(memge,ou~poEU[iJ); /0 Sends down. 0/

chan..ouLmeuaulier..buf.Out-poTuiS();

void router.:answer(void)

int sum=0-0 /0 Should be zero. now just testing mode. 0
int lower-.sum. tasksumv-O;
int Chan;

for (int imFIRST TASK-PORT-NUMBEft; i<mlasLmAskporL number~i+

Chan z alt-.waiLvec(ins, in..ports):.

chwjn.inword(&Wa*sum,uU~orS(chaW);
stum a sum + task-sum'.

for (iFPWSTL~OWERYPORLýNUMBER; i<=astIower...port-number, i++)I

Chan - alL waiLveC(ins, in-..Pons);
chan-in-word(&lowerý-sum~inorts(chafll)*

sum U sum + lower-sum;

chanou..ouword(sum.out..poiu[0OD;

void routeraterminate(void)

for (in(i=FIRST..LOWER-PORTJ4UMB3ER*: i<=1ASLlowc4r~prtnumbeE: i++)

chan-.ou~word(mcssae,out-.porut5iJ);
for (i=FIRSTTASK-PORT)IUMB ER: ic-last_task_ pon-number, i++)

chanjout~word(messagefout~pofulSiJ);

140

FILENAME : outen.cpp
AUTHOR : Dr. So-Hung KWAK & Cen Ali DUNDAR
DATE : September 1993
DESCRIPTION : This source code performs routing for ansputers.

#include <chan.h>
Oinclude "router.h"

void main(mt argc. chat Oargvf, char "envpfl.
CHAN *in..-pors, int ins. CHAN *out~ports0, int outs)

int exitflag - 0;
router router i(in.,pons~insoutpcuts.outs);

routerl.initO;

while (lexitilag)
switch (routerl.cmdjryp&) I
case SENDMAP:
routrl.sendjmap;0
break;

case BCASTREQ:
routerl.bcastm.qO;
router I .answer0;
break;

case TERMINATE:
routerl.tenminalcO;
exitiflag a 1;
break;

default:
/0error/
break;

141

I.****O******O0OQOOO06O6OO*O***e***********0•**** *.***.********0 ****.O0

FILENAME :ruer2.cpp
AUTH OR.........: Dr. So-Hung KWAK & Cen Ali DUNDAR
DATE : Septemb•r 1993
DESCRIPTION : This source code performs routing between utrnspumn.
**********0Q *0*0i*•i**** ************•**•**•**i*** ******•******* **** ** ***** e* **o*e*

#include "mrur2.h"

#include <Iostremn.h>

const int OUTYPORT-NUM =2;

const int IN_PORTNUM - 2;

router2::router2(CHAN *in.pors I],int ins1, CHAN *out.pors I J.int outsl)

in..xm in-ports i;
ins - insI:

outt-pv - outports 1;
outs a outsl;

int conveUto.dst(int destination)

/* Destination address does not contain zero. 0/
int dsto&

int digit - destination % 10;

destination n destination / 10;
while (digit) (

dst - (dst << 2) 1 digit:

digit = destination % 10;

destination destination / 10;

retum dst;

void router2::router_init(int destination, mit low, in: nts)

int message a 0;
int cll - 0; /0 Current level number /
ROU _EPACKK_CMD(message,START INIT);

ROLTEPACKJNTS(messagejuts);

ROLrTEPACK..LOW(messagelow);

142

ROUT PACK..DST(mem onvert to. dst(destinazin));
ROLTI-PACK-.CL.L(measq,cU);
cttouL..uword(memuge.oufLpo[OUT...PORT-NUMJ);

void fouse2::fotrcuwn~tone~void)

intnm~e a 0;
ROLflE.YACK...CMDnm~smge,TERMINATEJN1fl;
ROLTYB...PACK..LOW(memge.2).
chan-out-.wo~d(meusage~out-ponsOUr-.PORT.JJUMI).

void roua;r2:terminate(void)

int messge a -
ROIYIEPACK..CNfD(meuage,TERMINATE);
chan-.out-word(fmwesaeoui-ponaOUT.YORT-NUmI);

void router2:send(imt destination, int nta, it size, char' bid)

int message = -0
ROUTE._PACK_.CMDnmesuge, SEND_.MAP);
ROUMrE.ACK_.NTS(mmWag, ins);
ROTTE-PACK..DST(messge. convertuo..dst(destination));
/* Sends "header"*/
chan.out..ord(messsge~out~porna(OUTr.ORT-.NUMJ);
0 sends 1slzeO 0/

chan..out-word(sizeo,out-.pocuuOUT-PORTYNUM]):.
chin4 bp - but;

bit num..ofj~sckets a size / ROUTER..BUFS IZE + 1;
tin(last4pckeL size - size % ROUTFlRBUFSIZE;
while (num..of~packira>O) I
If (num...of~packetsm I)
if (last.pskec..size> 0)
chanaut-meuag(bmpackee..size~bp,out-.porus(OUT-PORTJJUM]); I

else 1/0Nothing tosed

143

chanotutme=Se(ROWn~t.BUF..ZE,bp.out~pmNt[OUT-PORT-NU1);
bp +u ROUTB&kBUF..StZE-.

num..of-pwkew.

void rouwr2::bcastr-t size, cha* NOd

int meaaae-
ROUTEPACK..CM~nmeuacBCAST-.REQ).
ROUTE-PACK....CS(memae.size).
chawoL.word(measgc,uL.potuUOUTPO-TYNUM);

int roumar2lisme(void)

int nmcmge
chanjinyord(&message. in..poxuuTNyORT-NUK);
retunm mcU4C:.

144

MIENA ME........ : outw3.cpp
ALTM FHO.......... Dr. So-Hung KWAIC & Cern Ali DUNDAR
DAMT............. September 1993
DESCRUTION..... :hi~s souyce code performs routing for workers.

#include "routar3h"

routc3:mWut(CHAN *1n..portslo~nt insl, CHAN *ouz.portslO,int outsl)

in-pco1sm in-portsl1.
ins a ns 1;
Outzt.ports W out-ports 1;
ouits -outsIl;

int router3::crndjtype(int& size)

chanjn..word(&mecssae.in-port4(O]);
lint cmd a ROU1EUNPACK..CMD(message);
if (cmd - SEND)
rchanjin~word(&size.in-.ports[O]);

esue
size a ROI TM-U.NPACK..BCS(messge);
retwn(cmd);

void router3::receive(int size, char* buf)

char bp w buf;

min num..of~packets m size / ROUTER_.BUP..SIZE + 1;
int last-packeLsize a size % ROIYFER_.BUF_.SJZE;

while (num..of...packets:O)
If (num..of~jmcketsml)

if (last~pscke1-size > 0)
chan-in.messge(last..pskeLsize.bp~nJort(OD;I)-

else fjNothing to send 0/1

145

bp 4-- RO~flER..BUF..SIEM;

I

void router3::nswer(mnt value)

chanout~word(value,ou-ULPOD;O]

void router3::Wemlin&W(vOid) 4

146

FLBNAh E : s_los.cpp
AUTHOR : Dr. Se-Hung KWAK & Cem Ali DUNDAR

DATE : Setember 1993
DESCRIPTION : This source code performs LOS calculations between two points in the map area.

Returns 0 if LOS exists, returns I otherwise.

#include <math,>

#include "sjos.h"
#include "map.h-

int s-los::dos...sos(vector start, vector goal. map& mapl)

int stepsqi;
vector del = goal-start
int dcLxi. del.yi;

del-xi - (int) (fabs(del.ge.t_xO) mapl.get-gri&dsizeO);
del-yi - (int) (fabs(del.get.yO)/nmapl.get..grid&sizeO);
steps - (deLxi > del..yi) ? delxAi: dclyi;

/* Steps + I is nectury . because without adding 1, the last goal point is not tested. "/
vector deltajstep - (1.O/steps)Odel;

vector check-loc = smm

for (imO:i<steps:i++.){
if (map l.higherjhan(checkjoc))

return I;
checkIoc - checkIoc + dclta..step;
I

return O0

147

FILNAME........ týcosmmxpp
AUTfHORR......... Dr. Se-Hung KWAK & Cen Ali DUNbAR
DATE............. September 1993
DESCRUMTON This somce code handles the communication betweeni transputcrs.

#include "nIr-comm.h-
#include <chan.h>
#include -iosutam.h>
Oinclude 'los comn.h"

const int IN..PORTNLUMu4;
const int OUTI'..ORTNUMa-4:

trcomm::tr..comm(CHAN Oin~joftslfl int insi, CHAN *out..portslf, int outs)

router2a - routwr2(in-.portul, ins 1. ou:..ports 1, outs 1);
in..pclsn in-.portslI;
ins - ins I;
out-port a outatports ;
outs - outsl.

int tr...com::cmd-typeo

int cm~d;

chanjn..word(&cmdjnjpon[IN-PORT-.NUM));
return(cmd);

void tr-.comm::routerjinit(void)

mnt numbts:
int Otrs. *unders. *prs;
chan-in-word(&num-sn-ports[IN-ORT..NUM)).

trs - new inttnum-trs];
under& - new int[num..bsJ;
prs - new int(numjrs];

int sizemnum..us~sizoof(int);

148

chmjin-message(slze,(chws*in..port(IN..PRT-NUMJ);
chanjiunmessge(size,(Chu')udersjn...orl[ThLPORT.NUMI);
char~n..messag(size,(char')prsJIUportsON-)O-T-NUMD;

for (int i10 iknwrn..tn i+-4+)
oumte2a.fouter-irt(trtil~undez3i] ,prsri]);

1* Terminates initiAiization,/
fouter2aafouter..irni~doneO;.

void tr~comm::send(void)

int dst;,
char-)word(&dst-in.poruIN -PORT-NUMKD;

int ts
chanjn...word(&nts~inj-orK4ThLPRLýNUKb:

int size;
char buf-;
chan-it..word(&sizt~njpofls[INPORLýNUMI).

buf u new charisizel;
cba~njnmem osize.bufjin.ponts[(IN ORTY-UMI);

router2a.send(dst, nts. size, buf)

void tr..cornmn::bcast(void)

int size,
chajn-iword(&sizejn..pofls(IN.YORT-.NUM));

char* buft
buf = new char(sizeJ:,
chan-in..mesage~size.bufjnjvl(N..O TK4M).

CMD-JNFO *(md..jnfop;

cind..infop - (CMD-JNFO*)buf,

149

Imuw2Lbcaw~alz buf*

void trscomm::linen(void)

Lit value a ,outer2alistenO;
chnout~word(value,out-pofls(OUT-PORT-.NUMI)-

void tr..conlm::zeriin&Wevoid)

nmutwa~rmninateO;

150

FILENAM E tr-commLcpp

AUTHOR Dr. So-Hung KWAK & Cern Ali DUNDAR
DATE September 1993
DESCRIPTION This source code handles the communication between SUN and ransputers.

#include 'urcomm.h"

#include <iosreamn.h>

void mainCint vgc. char 0argvO. char *envp[],
CHAN *in-portsO. int irs, CHAN *out .jforts[, int outs)
f

int exit-flag = O:
trcomm trcomm l(in_pormins.out_,pcs.outs);
while (!exitflag)

switch (ftr.comml.cmdjypeO) I
case ROUTERINITS:

romrnm l.routerinitO;
break;

case SENDS:
tr-comm L.send0;
break;

case BCAST_S:
tr_comm l.bcasto;

break;

case USTEN_S:
trbcomm l.listeno;
break;

case TERMINATES:
Ir-omm 1 ttrminateO;
exit-lag 1;
break;

default: / Error/
break;

151

MW4AME........: voctor.cpp
AU mW O R Dr. So-Hung KWAK & Cern Ali DUNDAR
DAIM.............: September 1993
DESCRIflON: This source code defines the vector class operations.

Anclude "voctor.h"
inciude <mth~h>

voctor:vecwr() (x=0.0; yO0.0; z-0.0;);

vector.:voctor(double x 1. double yl1. double z 1) fx-xl1; y-yl1; z-zi1;):

int operaior-(vector v I. vector v2)

return((vl.xmuv2.x) && (vl.yu'.;v2.y) && (vl.z==v2.z));

vector operstor+(vector vi1. vector v2)

vector v(v l.x+v2.x, vlI.y+v2.y. vlI.z+v2.z);
return v;

vector operator-(vector v I, vector v2)

vector v(v l.x-v2.x, v l.y-v2.y. vlI.z-v2.z);
return v;

vector operator*(double a. vector v 1)

vector v(a~vl.x, a~vl.y. a~vl.z),
return v;

double vector:dopro(vector v2) /' Dot product 0/

rciwrn(this->x~v2x + this->yvy2.y + this->zov2.z);

152

double v0CtW.:magnitude(void)

return(sqrt((this).do~puod(Uiis)))-;

vector vectr.:nomaliza(void) /* Vector ncxRWMalzzou

vector result,,
double mag a (Othis).magnitudgO;

if (mag< lE-1OO)f
resUlLX aO.0;
feSUlLy =O.0;
reSULt .0; -

eta (
iesut.- (1.Ohfnag) (*(this).

retuni~rsult):

153

FILENAhM........ Woikarcpp
AUTHOR : Dr. Se-Hung KWAK & Cern Ali DUNDAR

DATE September 1993

DESCRIPTION This source code handles the communication between routers and workers,

passes all information to workers and gets the result which they found.

#include "router3.h"

#include "los com.h"

#include "sjios.h"

#include "mapcrx.h"

int numcnt(int n , int4 buf, int buf._size)

int cnt - 0;
for (int i-O; i<buf size: i.+.)

if (bufliJ=num) cnt+..,,

return cnt;

void main(int argc, char *argvf, char *envp[J,

CHAN *in--,ports int ins, CHAN *out.ports[]. int outs)

/0 three cases: getnmap

geLreq & return answer

terminate
0/

int exit-flag - Q

int size = 0;

int* but;

int buLsize;

CMD-INFO cmdjinfo;

MAPJNO map-infoo:

vector testj, test.g;

int c-result:

map c.map:

router3 router3a(inportsjins.out_.orts,outs);

map-crx map crxer,

silos losI:

154

wnhile (!exit.flag)
switch (router3acmnd-ype(size)) I

case SEND:
rote3Lrceive(size.(char*)&map-info);
fouter3acmd-type(size):
buf-size a size / 4:
buf - new int(bf.sizej:
router3aLreceive(size,(char*)buf);
c-nap a map(map-info~starn..x map-info.start-y,
map-info.size-i.. map-info.sirt..y,
mapjinfo.gridsize, but):
break.

case BCAST:
router3ajrecive(size,(chaz*)&cmdjinfo):
map...crxr.set..alue(c -map);
if (map...cer.mapsruusing(cind..info~stmi cmd-info.gco1, teas,-s tesL-g))
cjesult -los I Ao..sjosteuts. test~g. c~map);

else
C..rsult -0;
route6LaanSWer(c..rSUlt):.
break;

case TERMINATE:
routeB~aterrminateo:
exit-flag w 1;
break;

default: /1 Errr
break;

155

F ENA wkerInk
AUTHOR Dr. S•-Hung KWAK & Cern Ali DUNDAR

DATE September 1993
DESCRIPTION Does the necessary links for workers.

worker.bin
routr3.bin
map.bin
map-crx.bin
s-los.bin
plane.bin
line.bin
veror.Lin

156

I FIENAM E btlSO.cfg
I AUTHOR Dr. Se-Hung KWAK & Cem Ali DUNDAR
I DATE : September 1993
1 DESCRIPTION This configuration file are for 15 transputers, one Sun SPARC Station and one
PC Host. I There ar one router and 12 worker tasks for each transputers.

processs" host
processor sun wypepc
processor root
procesor pt
prw:,ssor p2

Mxce= p2l
ferocessor pl 11
processor p211
processor pi 11
processor p2l 111
processor pIIII
processor p21111
processor p 111111
proces&x p211111
processorpl1111
processor p2111111

wire? rootfOj hostlO]
wire ? root[l] pi[l)
wire? roo[2] p2 [2)
wire ? roo43J sun[0]
wire? pl[21 p11lI
wire? p2[l] p2112]
wire? p11[2] pillll]
wire 7 p2 1[I] p2 1 1 12]
wire? pIll[2] p11l11ll
wire ? p2ll1l] p211112)
wire? plIll[2J pillllll)
wire? p2111[1] p2111112]
wire? plllll[2] pillllI[lJ
wire? p2111(l) p211111121
wire? p111111(21 pllIlllll[J
wire? p7llhll[l] p2lllll(21

I Task connected to filter cannot use 0 channel of task thereforc, master has to have 5 ins & outs
I Also a channel to filter has to be lowest number.

task afserver ins-I outs-I
task filter ins,2 outs,2 datax 15k
task master ins-5 outs=5 datan ISk filew,"tr_commt.b4"

157

task routeaO Ins-20 outs-20 datau2k rols~ utcr.b4o urgent
task routed izu-20 outsm20 datk-2k filem"foumr.b4 urgent
task routed2 h"u20 outs-20 daiau2k filesurmer.bV urgent
task routerl 1I ins=2O outs-20 datam2k fiieurfouter.bMh urgent
task muumr2l ins=20 ouw-20 data-2k fie~otrM urgent
task routed I1I ins-20 outs-20 datau2k fiie-~roter.b4" urgent
task router2i 1 ins-20 outs=20 data=2k files"wouter-b4" urgent
task routedi I II ins-20 outsa2O datm-2 filem~router.b4" urgent
task ruter2i I I ins-20 ousmmO datm-2k file. ruter-b4 urgent
task routed 1111I ins-20 outs-20 ciatm-2k fiemarouter.b4a urgent
task router2i 111 ins-20 outs=2O datam2k fiiem"router.b4" urgent
task irouter1 11111I ins=2O outs-20 datam2k fiieus~router.b4" urgent
task iou ier2lI 1111 uis-20 outs-20 datim2k fiiemurouter.bW* urgent
task routedi 111 I l ns-20 outs=20 data-2k flleummuter.b4" urgent
task router21 11111I insin2O outsm2O datau2k flu ~router.bV urgent

task wcwkerO0 ins-i outami duata275k fider"woi1ker.b4"
task workaOl ins-i outsoi dataw275k fiiem*worker.b4*
task workeaO2 ins-i outsai data-275k fiiem"woqker.b4w
tak workezO3 ins-i outsoi daza.275k rflnwod=e.bC*
task woikesO4 ins-i outs-i datas275k files'worker.b4
task worketO5 insai outpoi data-275k file-"worker.bM
task works"O ins-I outo-i data=275k flle-worker.bC"
task worketO7 ins-i outsxi dra-a275k filew"worker.b
task worketOg irm-i outs-i dataw275k fiie-'worker.b4
task workeiO9 ins-i outs-i data-27Sk flie-worker.b4"
task workaeiOiO ins-i outs-i dawa275k fllen-worker.b4"
task workvIOii ins-i outs-i data=275k fiie-worker.b4'

teak workerIO ins-i outsoi data-275k file-worker.b4*
task worked I ins-I outs-i dama-275k ftle-worker.b4"
task worW1r2 ins-i outs-i data-275k fllenoworker.b4"
task worker13 ins-i outs-i data-275k fiiea~worker.b4"
task workeri4 ins-i outs-i data=275k flde-'worker.b4"
task worker 15 ins-i outs-i data-275k files-worker.b4"
task workcri6 ins-i outs-i data-275k filem*worker.br*
task worker17 ins-i outs-i data*275k rdeaworker.bC"
task workeirIg ins-i outs-i data=275k ftle-~worker.b4
task worker 19 ins-i outs-i dza-a27Sk filewwworker.b4"
task worker I 100 ins-i outs-i dala=275k fiiem~worker.b4"
task workeri 101 ins-i outs-i datax275k rilea~worker.b4"

task wcvker2 ins-i outs-i daza-275k rilaiemworker.b4"
task workerdi ins;-i outs-i data-275k fiMm~worker-bC
task wovkeM2 ins-i outs-i dazau275k filem~worker.b4"
task workaO2 ins= I outs- I daza275k filie=worker.b4
task wcuker24 insai outs-I dalam275k filenoworker.b4"
task worker25 ins-I outs-I data=275k filem~worker.b4"
task worker26 ins-i outs-i data-275k fllcagworker.b4
task workcr27 ins-i outs-I data-275k flic-'worker.b4*

158

task wwcker28 Wont outs-i data-275k fJem~wodur.bC
task wwrker2 irowl outs-i data-275k fie~okrb
tesk worker2lOO ins-i outs-I data-275k filc-Owovker-bC
task wwrker2i0i jin-i outs-i data-275k file-mworkar.b4w
task workecrIi ins-i outsui data-275k fileawoska.b4"
task workedi II ins-i outs-i data-275k fl~ern'worker.b4
task workerli 2 ins-i outs-i data-27Sk tfie-wworker-W4
task workar113 insuli outs-i data-275k flc-*worker.b4u
task warkeril14 ins-i outs-i dataml75k file-wworker.b4m
tas workerlIlS ins-i outs-i dm=275k filemworkerb4
task worked 16 ins-i output dzao27Sk files-worker.bC
task worked 17 ins=-I outsoi data-275k filem-worker.b4"
task worked 18 ins-i outs-i dzam275kc ffie-oworker.bC
task workeri 19 insai outs-I dmat-275k file-omwou -*or
task workari 1100 insmi outs-i &m=a27Sk rdi.-"worker.b4
task worked 1101 Insai outs-i dat-275k filemeworker.b4"

task worked 110 insui outs-I daza-275k fllemworker.b4m
task woukeri II I ins-i outs-i dm=a275k file-wworker.bC
task worker 1 112 ins-i outs-I data-275k filemuworker-bW
task workerl 3 ins= I outs- I dasa275k fiiemm"worker.bC'
task worked 114 insui outs-i daa275k filworker.b4
task workerr1115 ins-i, outs-i dsata275k file-~worker.b4"
task workedi116 ins-I outs= I data=275k flewwworker.b4"
task wokerl 117 ins-i outs-i daza=275k fie-worker.b4
task workerii ins18-iw outs-i data-275k file-*worker.b4C
task wovkeri 119 ins-i outs-i data-275k filem"worker.b4'
task worker I1 11100 hns-i outs-i datam275k fiie-"worke,.b4"
task workedrIli 11ns-io outs-I dta-27Sk file-"workar-b4

task worked Il110 ins I outs- I dtau27Sk file-*workerb4'
task worked 11111 ins-i outs-i dm-275k fie-"worker-b4
tas wo'*er Ii112 ins=-I outs-i data-275k tile-*worker.b4"
task worker I 1113 ins-i outs-i data-27Sk rde-wworker.b4"
task worked 1114 ins-i outs-i dats=275k file-"worker.b4"
task workced 1115 ins- I outs- I dta-27Sk file-sworker-b4"
task workerl 16 ins-i outsil dasam27Skfrilem-worker.b4"
task worker I Ii17 ins=-I outs- I data-275k fllemworker.bV*
task workedrIlI ina-I outs-i data-275k fie-*wovke.b4*
task worker 1 1119 ins-i outs-i Amts=275k tuie-mworker.b4o
task woslcerl 11I1100 Inms-I outs- I daza275k fde-"woiker.b4*
task workeril 1 I1101 ins=-I outs-i data-275k fillsworkej'.b4"

task workerl 111 10 ins- I outs- I daba-275k file-wworker.b4"
task workeri 11111I ins-I outs-i daza-275k fide-worker.b4*
task worker I 11112 ins-i outs-i dala=275k file-"worker.b4m
task workedi 11113 ins-i outs-i data-275k file-mworker.b4
task worker 11114 ins- I outs- I data-275k fiiem~worker.b4"
task workeri 111t15 ins= I outs- I data-275k rde-*woiker.b4m
task workerlI 11116 ins=-I outs- I data-27Sk fiie-¶orker.b4"
task workerl I11117 ins-i outs-I dawa275k fil-"worker.b4"

159

tuk workeri 1I118 Ii..1 outsui data-275k fianwoiker.b4a
tosk warkar 111119 ins-i outs-i dats-275k fiemworke.b4"
task worker 1 111 1100 ins-I outs-i data-75k ill -worker.b4*
task workrliml I 10 insai outs=-I dat-27Sk fle-~worker.b4a

task workedi 111I110 insui outs-i dsza-275k file-~worker.b4o
task worked I III 111 jawi outs-i daa-P275k fi1.-oworker.b4"
task waskeri1111112 ins-i outsui dws-273k filensworke.b4P
task workedI113 iaw-I outs-i dza-275k filie-worker.b4o
task worked 1 111114 ins=-I outs- I data-275k filensworker.bCu
task workedlII Il11 ins-i outs-i data-275k file-*wodke.bC'
task workedi 111116 inw-I outs-i data-275k firdmworker.b4"
task workerl 11111? ins-i outs-i dmta275k filem'worker.b4o
task workedii 1 II18 ins-i outsmi dmna275k file-'worker.bC
task workedl 11I1119 insu1 outs-i data-275k fd!:-workcr.b4"
task workerl 1111 I1100 ins-i outs-i data-275k filenworker.b4*
task workedi 1111 I1101 insai outs-i dva-275k filesaworker.b4p

task workeri I III 1110 ins-i outs-i dMPa275k fiie-'worker.b4"
task workedi 11 I IIIII insai outs-i datau275k filenuworker.b4 0

task workedi 1111t112 ins-I outs-i data-275k file-~workar.b4"
task workerll 111113 insui outs-i data=275k filawoirker~b4"
task workerl 1 111114 ins-i outs- I dua-m275k fiies'worker.b4a
task workerl 111 1115 ins-I outs-I dataa-275k file-"worker.bC
task workerl 11 II111i6 ins- I outs- I data-275k fiiemuworker.b4
task workeri 11 II1117 ins-i outs-i dwama275k tide-worke.b4o
task workeri Ii 11 I118 ins-i outs-i dat-275k fiienworker.bVa
task workerIlI 11119 ins-1 outs-i daza-275k Mie-~worker.b(o
task worker 1 11111 I1100 insai outs-i data-27Sk file-oworker.b4
task workedi 1111 I1101 ins-i outs-i d~ata275k file-~worker.b4

task worker2l0 ins-ia outs-i dtaum275k filem-worker.b4p
task wowket2l ins-il outs-I dza-275k flie-wodwe.b4"
task worker2l2 ins=1 outs-I daza=275k file-*worker.b4'
task worker2l3 ins-I outs-I data-275k filem~worker.b4"
task worker2l4 ins-i outsmi data-275k file"wowker.b4
task workew2l 5 ins-I outs-i daaa-275k file-~workcrib4'
task worker2l6 ins-I outs-I data-275k fde-"worker.b4"
task worker2l7 ins-I outs-I data-275k file-~worker.b4"
task worker2l 8 ins-i outsmi data-275k filem"worker.b4"
task worker2l9 ins-I outs-i daia-275k filem"worker.b4"
task worker2l 100 ins-I outs-i data-275k file-"worker.bC
task worker2l 101 ins-i outs-i data-275k fiiem"worker.b4"

task worker2l 10 ins-I outs-I data=275k file="worker.bC
task worker2l I1I imns- outs-i datam275k files-woulcer.b4"
task workef2l 12 ins-i outs-I datau275k rile-"worker.b4
task worker21i3 law-i outs-i data-275k f~ie-"worker.b4'

160

Wak wauker2li4 ftwo-i outs-I data-275k file-~worker.b4w
task warkec2i 15 izu-i outs-i data-75k rtilswwoker.bC
tas workei2ii6 ins-I outsui dt-275k fle="wagkw.b4s
task workcr21 17 ins-i outs-i data=275k file-~worke.b4*
tas wcuker2i 18 ins-i outo-i data-275k file.'worker.b4
task wowker2i9 ins-i outs-i daza-27Sk file-~worker.bC"
task worker2li 1100 ins-I outs-i data-275k filew-worker.b4
task workedili10i ins-i outs-i data-275k fiie-~worker.b4"

task worker2l 110 ins-i outs-i dattn275k filenuworker.b4m
task worker2I iii ins-i outs-i da-t275k filewworker.b4w
task wcurci211i12 ins-I outs-i bram275k file-~wafker.bC
task wcuker2iii3 ins- I outs- I dut275k fiawwcxkerbC
task worker2i i 4 ins- I outs- I dmn275k file-"wwcker.b4"
tas woker2l 115 ins-i outs-i data-275k fiic-"woukw.bC
task worker2l116 ins-I outs-i dmau275k file-"workcr.bC'
task worker2i 117 ins-i outs-I dazs275k file."woka~.b4
task worker2l 1 18 ins- I outs=-I data-275k fikem"worker.bC
task worker2i 119 ins-i outs-i data=775k filea"worker.b4"
task worker2ii11100 ins-i outs-i data=275k filen"worker.b4"
task warker21 I 1101 insa-I outs-i data-275k fiie-'workear.b4"

task worket2ll 1110 ins-i outs-i daia-275k fdem'worka.Mm
task wacvkc2li ins-i outs-I dwaz-275k fiiem"worka~.bC'
task worker211ii12 ins-i outs-i daza-275k fiiew"worask.b
task wovker2i 1113 ins-i outs-i datau275k filemwofkea.b.4
task wcwkc2i ii14 ins-i outs-i data-275k ffile-"workcr.bC
task wodcer2ll1i5 ins-i outs-i dauam275k file-"workff.b4
task woxker2i 1116 ins-i outs-i datam27k rde-"wofwke.bC*
task wcwker2l ii17 ins- I outs- I data-275k fiie-awodka~.b4m
task worker2i 11I18 ins-i outs-i datow27Sk file-wawrkef.b4
task worker2i 1119 ins-i outs-i data=275k filen-worker.b4
task worker2l 111 I100 iris-i outs-i data*27Sk filem"wofker.bC
task wwkcr21 111101 insai outa-i datoa"275k fiiew"wofka~.b4

task worker2lI 110 ins-i outs-i data-275k riien"woirsr.b4*
task wcuker2l 11111I ins-I outs-I data-275k fiic-mworker.b4
task wxrker2i 11112 ins-i outs-i datop275k fi~cmwwoka=.b4
task worker2i11113 ins-I outs-I data=275k fidem"workar.b4"
task worker2l iii14 ins-i outs-i data-275k ftic-"worker.b4"
task woxker21iiiiS ins-i outs-i dmts-275k fiie=wworkcr.bC
task worker2i 11116 ins-i outs-i data-275k file-"worker.bC
taisk wouker2l 11117 ins-i outs-i daia-275k ftic-"warker.b4'
task worker2i 11118 ins-i outs-i dataw275k fdc-~worker.b4"
task wowker2l 11119 ins- I outs- I daza-275k rtle-'worker.b4*
task wcirkcr2l 111 I1100 insai outs-i data-275k Cdewwofkei.b4*
task worker2ill lI 10 ins-i outs-i data-275k ftle3-worker.b4

task worker2l III 10 ins- I outa Il data-27Sk filem-worker.b4'
task worker2l 111111 ins- I outs- I data-275k ftle-wworker.b40

task worker2l 111112 ins-i outs-I data=275k rile="%%orker.b4*

161

task workmr21111113 ins-i outi-i dumm27k riem~workar.b4"
task woikar2l1111114 irdmi outsmi duan275k filvawo'ker.M"
task woinker2l. 111115 Ins-i outs-1 dzau27Sk Mema.worker.bV
taskworktr21111116 ins-l outs-i dzm-275k flle-wwoskarbit
task workmr2l 111117 inoni outsuI data.275k filemwockem.b4"
task worker2i 111118 insmi outs-i I m-275k fillemworker.br
task warker21 111119 insm-I outs- I dxa-275k file"worker.bil
task worker2l 11111100 irnsi outs-i dzta-275kriiem-wodkcr.b4"
task wixker2l. 11111101 iv- I outs- I damm27Sk file-mworket.bit

W~ort numbtixs 0 ... 3 forwruters.
WPort ntunbars 4 ... for tasks(workeus).

place Afaerver host
place filter foot
place master foot

place routed) Tom
place workazO0 ftx
place wotkerOl folot
place wcwkeO2 foot
place worknto3 foot
place workaO4 roolt
place workerOS o
place watka06 root
place workevO7 root
place workerO8 rolot
plc wmkerO9 foot
pla" waeokeOo 10foot
place wrketOlOl f"o

place routeri p1
place workerlo pi
place workeril P1
place worker12 p1
place worker13 p1

place worker4 p1,
place workalS5 p1
place workerl16 p1

place worker17 p1
place workerIB p1
pls~ceworker19 P1
place worker I 10 p1

place workerll 101p1

place routedl Ip11
place worker 1lO p11
place workerli IIIp11
place worker 112 p11

162

place worka113 pi1
pace worked114 plI
place workae 15 p1I
place woka116 p1I
place worer117 p1I
place workeI118 pl1
place workrl19 pl1
place workerl I1100 pl1
place worker 1101 pl1

place routerl I I pill
place woxkrl I10 pill
place workerl I I I pill
place worerl 112 pill
place worerl 113 pill
place workerl 114 pill
place wockrl 115 pill
place wokrke 116 pill
place worker 1117 pill
place worker1 118 pill
place workerl 119 pill
place worker I 1100 pill
place workerl I 101 pill

place routerl I I I p1111
place worker I I 0 p1111
place workerIll I1 pllll
place workerl 1112 pllll
place workal 1113 pl1ll
place wofkerl 1114 p111
place workerl 115 p1111
place workerl 1116 plll
place workerl 1117 pill1
place workerl 118 pllil
place wokerl 1119 p1111
place wokerl 11100 plilt
place workerl I 1101 pl1ll

place router111 pII11111
place worker I I110 p11111
place worker I I III p11111
place workerl 11112 p11111
place worker I11113 p11111
place worker I I 1114 p11111
place workerl 11i115 p11111
place workerl 11116 p11111
place workerI I 1117 p11111
place workerl l I 118 p11111
place workerld 119 p11111

163

place wogk= 11010 p11111
place wou'kea1 11011 p11111

plameruterllllil p111111
place owxkrllIllIl10 p111111
plawcwkemr111 IIIIIIP111111
placeworlar I11112 p111111
place worliar1111113 pill111
place woika11I11114 p111111
Place Woikaw11111s P111111
place woricalll p11116 III
place worked1111117 p111111
place workea1111118 p111111
place worka1rl111119 p111111
place woikerll1llllO p111111
placworkrl~ll~lllOl p111111

placerfouterlIIII p1111111
place workerlIlO III10p1111111
place workaII111111 pill1111

place workerll111112 p1111111
place wodel 1111113 p1111111
place workerl 111lItl4 p1111111
place workerlll1lll5 pill1111

place warkerl111116 p1111111
placeworker It11117 p1111111
pbmcwouterlllllllg p1111111
Place WorkerllIlIl1ll9 p1111111
place worked I IllIlIl100 p1111111
Place workea1II1111111 p1111111

place routed2 p2
place worka20 p2
Place Workerdl p2
place worker:22 p2
place worker23 p2
place wodier24 p2
place worker25 p2
place worker26 p2
place worker27 p2
place worker28 p2

place woilcer29 p2
place worked2 10 p2
place workerdlOl p2

place routed I p21
place worker2lO p21
place worker2 11 p21

place worker2l2 p21
place workerdl3 p21

164

place wai=e214 p21
place workcr2l5 p21
place wcrka216 p21
place worka2l7 p2l
place woakcr21S p21
place workei219 p21
Place wcrka2 10OO p21
place wcier2l 101 p21

place rouvew2ll p211
place waker2l 10 p211
place worker2llIt p211
place worker2112 p211
place wai=e2ll3 p211
place worker2114 p211
place worker2115 p211
place worter2l 16 p211
place vofker2ll7 p211
place wok2ll8 p211
pliace workor2119 p211

place wcuke211I W p211
place woker2lll101 p211

place rouwe2llI p2l111
place woker2lll10 p2111
placewofker21l I p2111
place wodce21112 p2111
place wodcer2lll3 p2111
place worke2lll4 p2111
place werke'21115 p2111
place worker2lll6 p2l111
place worker2lll7 p2111
place worker2llIl8 p2111
place workcr2lll9 p2111
place worke21 11100 p2111
place worker2llIl110 p2111

place rmues2lll11 p21111I
place wcwker2llIl11 p211I11
place worke¶211I111 p211111
place worker211112 p2111II
place worker2llll3 p21111I
place worker2llll4 p211111
place worker2llll5 p211111
place wofker2ll1l6 p2111II
place worke'211117 p21111
place wofker2llIlIl1 p2i1111
place wod=e2llll9 p2l1111
place wofker2l111100O p21111t
place wo,!ker2ll111101 p2lllI

165

place roufta211111 p2I1111
place worker2lll110 p2lll111
place woikn2Illll11 p211111I
place worker211lll2 p2111111
place wod=e2lllll3 p2111111
place worke2111114 p211 111
place worker2lllll5 P2,11I!
place workwr2l1ll16 TO-11111
place workar2111ll7 p2111II1
placewoikr21 11118 p211 111
placeworker2111119 p21l1111
place worker2llIOII10 p211111I
place worker2lll111101 p21 I1111

place rouar2lll1111 p211111II
place workar2lI 11110 p2l111111
p'ace workea2l111111 p2l IlIlII
place workm2ll1lll2 p211 1111

place worker21111114 p21l11111
place worker211lll15 p21I11111

place worker2l111ll6 p21l11111
place worker2llllll7 p2111111
place worke2lIl11118 p2111111I
place wodmr21111119 p2111111
place worke2 Illl1l00 p2111111
place worku2llIl111101 p21l11111

connect ? afserverf 0] filter[O]
connect ? rilterfO] afmservefol

connect ? filteif 1] mswe[I]
connect? masted II filteuil]

connect ? master[2J routeiO[OJ,
connect ? routeiO[O) mastet2l

connect 7routeuO[I] routerilO)
connect? routeri (0] routeiO(1

connect ? foutmV[2J routur2oJ
connect ? router2[O1 routeMo2]

connect ? routetO[4J workefOO[Ol
connect ? workeiO(0J routei0 [4]

connect ? routetO[S] worketOl1L[0
connect ? worketOl1t[0 routeiO[5J

166

connect ? fouteiO(6J workomO2 [0]
connect ? worke:O2[OJ routuO[6J

connect ? roumei[71 workei)3 [0]
connect ? workerO3(0J routeiOP]

connect ? routeao(8J worker04[0]
connect ? worke.04[oJ roeumO[8J

connect ? routegO[9J wocwker5[0J
connect ? workezOS(0] routezO[9J

connect ? outeaO(101 workerO6[0]
connect ? workeiO6[0J roTeO(10IO

connect ? routeK)[1 1] worka07[0]
connect ? workeO7[01 foutwiteO[

connect ? rutizO[121 workeiO8[0J
connect ? workerg(O8(rouZcOt12]

connect ? routetO[131 workaro9[0J
connect ? workerO9[0J rouzeiO[13]

connect ? routerOt 141 workeaolOO[O]
connect ? wofkez100(O] routeiOf141

connect ? TouteiO[15) workerolol [0]
connect? workerOlOl [0) routetO[15

connect ?routerl[I] routerl 1 01
connect ? router! 110] routerl[IJ

connect ? router! [4] workerlO[O]
connect ? worker10[0J routera (4]

connect ? routerliS] wofkerl 1 0)
connect ? worker IfOJ router 1 [J

connect ? routerl (61 workeul2f0J
connect ? workerl2[0J routcrl[6j

connect 7routerl [7) workerl3[0]
connect ? worker1310) routerl[7j

connect ?routedl[8) workerMI40
connect ? workerl14[0) routed! 18)

167

conim t ? rujter1 (91 workeIS[O]
connect ? wolkmln15[01 rouel(9

conneL 1 roterl(101 worker16[0]
connect ? work.16[01 routerlIlO)

connect ? routerl (I I] workerl7[O]
connect ? worka17)O] roumrl[l]

connect ? routerl[12] workerI[u]
connect ? workerl8[0] routerl[12)

connect ? routerl(13] wokarlg[O]
connect 7 worke19[0] routlri[13]

connect? routerl (141 workerl 00[0)
connect ? workel 100[0] routerl[141

connect? routerl 151 wowkelI01 [0]
connect ? worke I101 [0) routerl [15)

connect ? router l 1I routerl I [0]

connect ? routedl I 1[0 roue'l1U1]

connect ? router1 114] workerl 10(0)
connect ? worker I100) router11(41

connect ? muter I 15) worker I 1(0]
connect ? workerl I I[(0 roueld (5]

connect ? routerl ![6J work=11210]
connect ? worker 1210] routerl 1161

connect ? router [7] worke113101
connect 7 worker 1 1310' routerl 17)

connect? router11[8] workr 114[0)
connect ? worker11410) routerl il~i

connect ? rouedl 1[9] worked115[0]
connect? worker 15[0] rouserl 1(9]

connect ? routed I1110) woker 11640;
connect ? wodr 116(0J rouer IIf(0]

cormnct rooterI11 I] worker117[01
connect "' vorkerI!710J rouerli][11

16

connect ? router If 12] worka1 18[01
connect ? worker 110] routerl (12]

cnect ? rouerl [13] worked119010
connect ? workerd19[0] routerl If 13]

connect ? ruter11114] workerl 1100[0
connect? worker I I00[01 routerl [14

connect ? routerld I [15] wokal1101[0]
connect ? workerl 1101[0] routerl 1[15]

connect 7 routerl 1[II routerl I 11 (0)
connectr terIli1 O] router!ll 1]

connect ? routerl 11(4] workerl 110[0]
connect ? workerI 11010] routerl 1 (4]

connect ? routerl 115] workerlI 110)
connect ? worker I II1 [0] routerl 11[51

connect ? routerl 1 6] workerl 112[0
connect ? workerl 112[0 routerlII[(6

connect ? routerl 11 (7) workerl 113[01
connect ? worker 111310) routerl 11[7]

connect ? routerl I 1[8) workerl 114[0]
connect ? workerl 11410 roue'l 81 [8]

connect ? routerld 1 [9 worker 115(0]
connect ? workerl 11510] routel"1!(9]

connect ? routerl I[10] workerl 16JO
connect ? worker 1116(0] routerl I I 10]

connect ? routerl I11[(I worker 111710]
connect ? workad 117(01 routel I [1i]

connect ? ruterl I i[121 workerl I18(0
connect ? workerl 1 18[G(6] rouel IIf12]

connect ? router's 11131 worker 1119(0]
connect ? wokaer 111910 routerl[1(131

connect ? router I 11[14j worke I 11!00[01
connect ? workerI I 1100[0] muterl I If14]

connect ? routerl I I(151 workae I 1101 [0)
connect ? worker I I 1101{(0 routel I I (151

169

connect? rmuterl 1 (11] routarlII 1[0]
connect ? rouml !I 110] rouerllll[1J

connect ? routel 111(4) wowkal I I I0[]l
connec, ? wokerld I 10(0] routerl 111[4]

connect ? roterl I I I)5] workerl I I I 1 [0]
connect ? worked I 11 [01 routerl1(15]

connect ? routerl 1111[6] workel 111210]
connect ? workerl 1112[01 routerl 111[6]

connect ? routerl I I I7] workerl 1113010
connect? workerl 111310] routerl I I I[7]

connect ? routerl I 11 (8) workerl 1114[01
connect? worer I 1114(0] routerI I I 1 8]

connect? routerl 1I[(9J workerl I 115[0]
connect ? workerl I 1t51] routerl 111[9]

connect ? routerl I I I [10) worker 11116[0]
connect ? workerl 1116(0] routerill[iO1

connect ? routerl 11([11] workerllll7[0]
connect? workerlI 111710 routerll11[1]

connect? routrl 1111[12) worker 1118[0]
connect ? workerl 1I11801 routirllllfi2j

connect ? routerld 11[13) workrl 1119(0]
connect ? worker! l119(0I routerlll1[13)

connect ? routerl 11114J worker I 11O110010
connect? worker I I 11100[0] routerl I 11t141

connect ? routel 1I 11115 worker I I 110 1 [0]
connect ? workerl I I 1101[0 routerl I 1I [15]

connect ?rouaer11111(1 routerl I II 11101
connect ? routerllIl111[0] routerlIll I][

connect ? routed111141 worker I I I I 10[0]
connect ? workerl I II Ii00 routerl 111114]

connect ? roued 11!11[5] wodmr IIII 1 !(0)
connect ? workeI I lI 110 routerld I5]

170

connect ? routerl 111116] worked I 111121O0
connect ? wourl 11112[0) routeld 11116]

connect? routedl I 1117] wdcrl 11113[0]
connect ? workeal 11113[01 routel 111117

connect? routerl 1111 [8] work•d 1111410)
connect? workrl 11114[0] routerl 1111(8]

connect ? routerl 11111[9 worker111115[0]
connect? workerl1111I[0] routerll 111[9)

connect ? routed 1111 [101 wodrklr 1111610]

connect ? worked 11116101 roulerllllll[O

connect ? routedl I1111I(11] workedl 11117[0]
connect? woerl I 11117[0] routed Il111[(11]

connect ? routed 1111[12] worka I11118[O0
connect ? workdrl 11118(0] routerl 1111[12)

connect? routerl 111(13] worker 1119(10
connt ? wokerl 11!19[0] routarllIl(13i

connect ? routedl I1111([14] workedl 1111100[0]

connect ? workerll 111100[0] routerl 1111(141

connect ? routerl 1111[15) wokaerl 1I1101[0]
connect? workerlI110110)[0 routerlllll[15]

connect ? routerl 11111[1) routerl I 11111 [0]
connect ? roumrl I I 1111 [0] routed 11111[1(O]

connect ? routedl 1I111[14) wofkerl I I11110[0]

connect 7 worker I 11110[0] routcr I 1111[4]

connect? router 1111115] workedl I I I 111[01
connect ? workerl: 1 1111 [0] routerll 1111[5]

connect ? routerl 11111[6 worked 111112010
connect? worker I 11112[0J roterl 111! 1[6]

connect ? router I 111[7] wokail 111113[0]
connect? workerl II I 1113[0 routel I 1111[7]

connct ? routerl !111i18] workerlI 11114(0]
connect ? workarl IIi14(0] routerl 1111![8]

171

connect ? torl I 1111(9J workell i115[01
connect ? workedl I I 115OJ routerl II111119

connect ? routerl I 1111(10 worked 111116[01
connct ? worked 111116(0 routerlIlIII110

connect ? routerld I (11)] workfl 111117[0l
connect ? workeld II11170 routeI11111[11

connect ? routerll 11111(12] workedl I I1118,10]
connect ? worked IIII18[0] routerllll[11112]

connect ? routerl I I[I IU13 workerl I I 1119[01
connect ? worked 111119[0] rouerlllilll[13]

connect ? routerl 11110[1] workl I 111110(0]
connect ? workedl I1111100l[O routed 11111[14]

connect ? routerl I I III[15] workerIlIllIl2[OJ
connect ? workerl IIII1101[0] routerllllll[15]

connect ? routed 111111 [4 worked l 111110[01
connect ? workl ll1 10 roertl 1 I 111[4]

connect ? routr11111[5) workai 1111111[(0
connect ? workd 1111111[0] rouicrll I1 5]

conct ? routerl II111116) workel I111112[(0
coect ? worked111111120] routerlI 11116)

connect ? routedl 111111(7] worker! 1 !111113(0)

connect ? workerl 111111370) routerl• 11111[1]

connect ? routerlIIII 118] workedl 1111114[0
connect ? workerl 11111140l routerl 111111[8]

connect ? routerl 1111!! [9] workerl 1111115[0
connect ? worker I 1111115 [0) routerI111!1119]

connect ? routerl I11I1I111 10) workerl 1111116101
connect ? worker IIII1116101 routedr I I I I 1 1[10]

conet ? router111II 1111[)1 worked 11I11117[0]
connect ? wodkarl I I 11117[01 ruutetl IIII 1111)1

conneict ? routedl 11111102] workerl I I1111I18[0]
connect ? workerl I11I11I118[0) routa~l 1I I! I It[121

connect 7 routedl 111111113) workdl I1 II 1119[01
conet ? workerd ItI 11119(0] routedl I I1111if[13)

172

connect ?wroutrkI11111[14100 wourklllllllO[01]

Connect ? wodtrl I I I I110)0 foukerlillilll~[14

connect ?worked IlIllI I 101[(0 routedrI I Itl11151

connect ? router2fJ 11 oumr2l[0J
connect ? routet2l (01 router2[1J
connect ? fouter2f4J wmrkar20(0]
connect ? wofter2O(0J rouwte2[4J

connect ? router2[SJ worker2l [0]
connect ? wrke&2l[O] router2[51

connect ? router2(6] workar22[0J
connect ? workea22[10 routae,2!6

connect ? router2171 worker23 (0]
connect ? worker23[0J router2[7]

connect ? router2[8J worker24[0]
connect?7 worker24foj route:2[8]

connect ? rouz&2[9J wokax25[0
connect? worker25(0J router2[9)

connect ? router2[10J wovker26[0J
connect ? worker2610] router2(1OJ

connect ? router2(11I) workef27[01
connect?7 worker27(0J outerx I I

connect ? router2[12J worker28(0
connect ? workeu28(0J router2[12J

connect ? router2[13J worker29[0]
connect ? worker29(OJ fouftr2[13J

connect ? router2(14] woik&210010J
connect ? worked 100[O1 router2(141

connect ? router2[1SJ worker2lOl (01
connect ? worker2101 [0) router2(15J

connect ? fmuC I [lIj router2ll1(0]
connect? routed Il1(0) router2l[1J

173

connect?7 routi2141 wrwk2lO(O1
connect ? worku'210(OJ routr2l (4]

connect ? router2l (5] worker2l1 (0)
connect ? worker2llO 1 0routerl(sJ

connect ? routez21f6] wofke2l2(0J
connect ? worke2l2(OJ roumt2l(6)

connet ?router2i(7 %woka213(O]
connect ? worker2l3[OJ murou2 11

connect ?router2l[8J womker2l4(OJ
connect ?workeu2l4[O1 routea2l(8]

connect ? router2l[9J worker2l5tOJ
connect? woirk=2lI5(OJ routwrIl9J

connect?7 roUMe2lO1 wotker2l6[OJ
connect ? worker2l6(O] rouwtet~l(O

connect ?router2Ul[I workMel7[o1
connect ? workea217(O] router2l (I 1)

connect ? routez2l[12] worker218[OJ
connect ? worker218(OJ rouier2l (12-i

connect ? outer2l[131 workeu~l9[O)
connect?7 worker2l9[0] routed Il(13)

connect ? router2l[141 worker2l 100[0)
connect ? worker2l 100 j0] routet2l 114]

connect ? router2l[15J workeu2l 101([01
connect ?workea21101 (01 router2l(15J

connect ? router2llI(1IJ route2l I 1(0)
connect ?router~ IlO 11) outet21J[1

connect?7 routedl 1141 worker2l 10(01
connect ? workcr21 10(0) router2l 1(4]

connect ? rougea2ll[5) worka2 11(0)
connect ? workerZ~llO I t0 outer2ll1(5]

connect ?routef2ll(6] workae2112[OJ
connect ? workerZ 112[10 foutt2l 1(61

connect ? router2l 1(7) worker2l 13[0)
connect?7 worke211310J rouwer~llI M

174

connect ? router2ll1l8] wourk21 14(0]
connect ? workeg2ll4[0) router2l 1([8)

connect?7 routrdll(91 worker2l 15(0]
connect ? worker21 15(01 outer2l 1191

connect ? roterdl I (10J worker2l 16(0]
connect ? workeri 16(0] routct2l 110]

connect ?rout~erdllI111 wodw~e2117(0
connect ? worker21l7(O] routerdl I(111

connect ?router2ilfl12 workedl 18[0J
connect ? worlux2l 18(0] routerdl 112]

connect ? router2l 113] workcr2l 19[10
connect ? workeri 19(0] rou=e2l11(13]

connect ?router2ll[14] workadlll1100]0
connect ? wod=e2ll1100[0) router2ll[141

connect ? routed 11l[15] wogkr2l I 101(0)
connect? wouker21 110110) router2ll(15]

connect? routerdlIl[1J fouterdllll1[0)
connect ?router2l I l1(01 router2lllI I]

connect ?router2ll11i4j workerdl110(01
connect ? workerdl110101 roucer2lll(4]

connect ?routed~lll(5J workcrdll111(0]
connect ?woricerdllll1(0) ro.AerdlI (5

connect ? outer2lll[6J worker2lll210]
connect ? worker2lll2[0] router2ll 1(6]

connect ?router2lll[7] worker2lll3(O)
connect? worlwr2lll3(0] rouwt2ll1117]

connect ?router2lll(8J worker2lll4(0]
connect 7workerdlll4[0J router2lll[8J

connect ? router2lll[9] worker2lllS(0J
connect ? worke2l1115101 router2ll 1(9]

connect ?routcrdl I [10) worke'21116(OJ
connect ? worker2lll6(0J routcrdllII(101

175

connect ?routav2l IlRl1 wodwk21117[O)
connect ?worke,21117(] rloulae2lllI[R111

connecz ?;.tfte2lll(12J wcwker2lll8(O]
connect ? wrkmc21 I 18[O rouar2lll[12J
connert? mu...2I111(13J worker2lll9(O)

cuts" .-outer2lil[l4J worker21 11100[01
connect? wmker2Il 100(0] routO111ll141

connect? fouter2lll[1SI worker21I)1fO]10
connect' wodwa2 1111O r0) rouwe2lll[151

connect 7router2l IllIi I roufterlllll[Oj
connect ?router2llI IO I r0 outew2l iI I(I]

connect ? router2l Y 1(4J worker2lllIl1[OJ
connect? worker2l 1110[OJ rouzdr211114]

c.~nnec? ru-nd I111151 Aodier'.111111(01
Coninect ?woid=2ll1111(OJ router2llll[5]

connecu 7, vzerdlll[6) worker2lllI2[OJ
connect ? wmkrka2ll112[01 route;,21 I1I I

connect ?router2llll[7J workar211ll3[0J
connect?7 workw211113[0J routcer2III(7)

connect ?routa2l I I 1 [)worker2ll A4[O]
connect ?worker2llll4[OJ routm2ll I 1 [J

-onnect 7router21 11(1 wockcr2llll5[OJ
connect ?worker2llll3I0l routac2llll[9)

connect ? ruter2ll111[101 wofker211116[OJ
con~nect? wodwe2 1116O] router2llll(1OJ

connect ?routwr2l I I ii J worker211117[O]
connect ? worker2llll7(O] woutr2liii[ill

connect 7 ruter2llll[12J wodcer2l I10
connect ?worker2l I I 1(O1 routet2llll(21J

connect ?router2llll(13J worker2l11 IP0U~j
coma'ct 7wogker2l~lll9[OJ router2lilll[3j

conreivc - miuwr21 111(14) worker2l 11I1100[0)
conneic-,wtez2 Ik&I111100[01 roiuer2llll(14J

176

connect ?router~llll(1S) workea2l 111101 [0
connect 7workedl 111101 [0] rutea2llll[151

conrnect ? r'ocr2lll1If1 routedl 11111(O)
connect 7router2ll11111[0) mutcr2iiiii~iJ

connact? router211111(4) wowked211110[01
connect ?wofkr2l 1111010) router2lllll[4J

connct ? router2lllll[5J wokcreallIllIll1(0)
connect ?worker2llltl I r 0 ousU2ll1ll[5J

connect ?router2lllll[6) worker2lllll2[Oj
conmcr? worker2lllll2[0J router2lllll(6)

connect ?router211111[7] worker2lllll3[0J
connect ?workea2111113[OJ router2lllll(7

coumt 7 romncv2lllll(8) wodmt2111114f0J
connect ?worknu21140 ozr2lllll4[] mtd 118]

connect ? muter2l~lll(9] wcwkc2Illll¶[0J
connect ?worker2lllliS[O]1 router2lllll(9]

connect ?routedZl 111(10] wou'k&2111116[0]
connect?7 woark211lll6[O] muser2lllll10J1

connect ?router2lllI II 111 worker2Illll7[0]
connect ?worker2111117[0] routcrdl 1111(11)

connect ?router2lllll(12] workar2111118[0]
connct ? worker2l 11118[01 rouhr2lllll(12J

connect ?router2lllll1031 worker2111119(01
connect ?worker21llll9[OJ router2lllll103J

connct ? router2llIllIljl 41 worker2l I IlI1100O0
connect ? workerdl III11100(0] rouzr2ll 111114)

connect ?router2lllll(1S] workcr2l IIlII 01(0)
connect ?workcrdlIII 1101J0 rou W ~lI II I[J5

connect ?router2llllll(4J wokcer2l 111110[O]
connect ?workcr2l IIIl11[0) router2lllllll4)

connect ?router2llI II 1[5) wocwk&211 I1 [)O
connect ?workez2lllI IIl(I1 0) rouwr2IlllI 1)5

177

caumet ?rouwa2llllll[6] wotu2l~lllll2(O]
connect? woskor211lI212O rcu=2111111[6J

connect ? rower2l III IM wod=21111113[OI
connect 7wodtcr2Illl~l13[0I router2lllllltl)

connect ? rwwerlII 1 8) workar2llllll4[OJ
connect 7wos*Vr21111114(O1 routet2l Ill1(81

connect 7 outea2111111[9J worker2llllllS(O]
connect ? wokei2l III115(0J rmutu~l 11111 9)

connect ? ruter2l I II 1[10] worker21lllll6(OJ
connect ? womke2llllI16[OJ rouser~llInlflO]

connect ? rwutea211111(1 worker2llllll7[O]
connect 7worker21111fJ otllll7[] f m l I III111

connect ?router41lllll(121 workur21111118[0)
connect 7workar2l1llll8[OJ router~llllll[12J

connect ?router2llllll[131 worker2111I119(OJ
connect 7wos*a21111119[O] router~llllll(13]

con'nect ?routetr2111111[14] workea2111111 100(oJ
connert ?worker~l 11111100[0I router~llllll[l4J

connct ? router2l 1111l(1S] workeu2lll1llI0l(OJ
connect ? worker2l 11111101(0O router2lllllI(15]

bind input massier 141 valuems&BOOOOOIC IWO3
bind output mastezf4j valueu'&80OOOOoc

178

APPENDIX C - SOURCE CODE FOR READING TERRAIN DATA

This appendix contains the source listings of the C code developed for reading a block

of terrain data from PEGASUS database into a specified buffer location which is stored in

SUN memory. The source code is stored in files as listed below:

1. PVGDEC.H

2. PVGDEC.IN

3. PVG-DEF.IN

4. get-terr.c

179

#ifndef PVGINCI.UDED
#define PVGINCLUDED

*** *e** ee** ** * *41e*** *.*.* ** *I *4Oe&*e*e*O* 4.* *.I** SS *41*41* 5*1*~** *4

FILENAME: PVG_DEC.H

PURPOSE: GLOBAL PARAMETER DECLARATION FILE FOR PVG ALGORITHMS

DESCREJflON: The PVGDEC.H include file includes all global variables
required for sharing data between major software components of
PVG software.

Parameters are divided into major categories using asteric lines.
All global variables shall be ALL CAPITAL letters.

USE EXAMPLE:
#include "PVGDEC.-"
"*****''"*** '******* * '***CODE START*"'"0* 5*4 "* '''"'*0"'*0*5 '0*0*4 *4 4 /

#include "PVGDEF.IN"

/**"***** COLOR PARAMETERS DECLARATIONS"4 *00*0*4 "**"'"1 *'*"*/

/*"***$0***'**'"*"** TERRAIN DATA BASE DECLARATIONS" 4 1 4 *4 4 1**** 4** 1 /

/* Sun main memory terrain storage buffers*/
u_int TERRAIN I (MAXBLOCKI][BLOCK I_SIZEX;/one meter

terrain buffer*/

/0 Terrain data bit assignments valid for all resolutions:

321
10987654321098765432109876543210

I ELE I SPARE I NOR ISI VEG I GSV I

where:

ELE or elevation ftor sea level to top of vegetation in meters
SPARE - not used

NOR a 4 bit surface normal
S = sun shale bit

GSV a gray shade value

*-

180

int TOhRRA MAP MAXEAST..RLOCK][MAX NORTHBLOCK]W terrain map
contains poinmes to terrain data blocks*/
int HAVEMAP[MAXEAST_BLOCKJ[MAXNORTHBLOCK]W/ Terrain resolution

map tells what resolution blocks are in memowy*/

/ range Iesolution parameters 0/
int SRMIN RERANGEM_N)M}/Pminimum resolution in meters /
int SRMAXU(ESRANGE_NM4/*maximuwi resolution in meters*/
int SRSTEP[RES..RANGENUM]J step size in meters*/

t HSPVG terrain data management 0/
int IFOVGRI[MAX..AST.BLOCK][MAX.NORTHBLOCK]I/* Terrain grid
to image map. Specifies the image location of
ground points.

EX: IFOVGRID[E][N]M image i coordinate

in upper word
- image j (row) coordinate

in lower word
-1 if terrain point is not
in the IFOV image*/

1 HSPVG terrain data communication variables*/
usho TERt ROC_HAS [MAXEAST BLOCKJ [MAXNORTHBLOCK]
[RAY.PROC_MAX1[RESMRANGEJNUM];1* Map of terrain
data in the HSPVG ray trace processors.
Dimensions are:
-casting quarter kilometer block numbers
-nonhing quarter kilometer block nwinbers
-ray processor number
-resolution ranges
for each resolution range a 16 bit value is stored
with the following meaning

bit 15 Bitsto14 description
0 Ono data no need
1 Ono data but needs it
O block#has data no need
,block# has data and needs it

181

uj_* ThFR..OCE_SFND[RAY._ROC_MAX+ I]IMAXBLOCK64](41]

/1 Tenrain processor send hIst Dimensioips wre

-HSPVG processor number we.i data is to come from

0. SUN processor
-list entry index sized to allow a full

of every quarter kilometer

OO[0]-destination processor number
if .1 means delete this terrain data

0[[l]-easting block number of data to be sent

[]fl(2]-nort'ing block number of data to be sent

[]0[3]-resolution of data to be sent*/

u_short SEND(RAYPOCMAX+I]:/ list entry pointer for

TERPROCSEND contains the number of blocks
".ocessor needs to send.

/.•*.***************TARGET DATA BASE DECLARATIONS **************" * /

int TARGETLIST[MAXTARGETS][10]]/ target information list

[01-target type ID
[I -easting position of target in meters
[2]-nonthing position of target in meters

(31]altitude position of target in meters
(4]= target heading in millirads clockwise from nortý.,-g

[5]- target pitch in millirads positive up
[6]- target roll in millirads clockwise positive

(71= speed in millimeters/sec

[81- status
[9]= spare configuration parameuW/

struct HAVELISTEL I
unsigned char "TARPR; /0 pointer to target data in memory 0/

int RES; /0 resolution index of target data "/

} HAVELIST[MAX_TARGETS; /* list of daL, ini SUN memory /

/*SUN resident target file buffers. These buffers are sized to hold

entire target file for a binary write*/

unsigned char TARBUFI [MAXTAR 1I]TAR I_SIZEJ;

182

/0l's resolution SUN resident target buffer */
unsigned char TARBUF2[MAXTAR2][TAR2_SIZE);

p 2'nd resolution SUN rident target buffer */
unsigned char TARBF3(MAX_.TAR3][TAR3_SJZEj;

/3 Yd resolution SUN resident target buffer "1

unsigned char TARBUF4(MA.XTAR4][TAR4_S]ZE];

P 4'th resolution SUN resident target buffer 0/

int TARSEND-LIST[MAX-TARGETS][4];P fist of data to be sent to the

target processor

[01-source of data processor ID
(I)-destination of data processor ID
[21=source data star address of dam packet (UNUSED)
[3),number of data elements to send*l

unsigned cha *TARSEND_LISTPR(MAXTARGETS);
p replaces (2) of above 0/

int TARHAVELISTMAX-TARGETS][20]•P information block buffer

used to collect and store information about what data
the target processor has.
[0]=target type ID
>0 target type ID
<0 player not needed or not in field of view
[l],weasing position of target in meters
[2junorthing position of target in meters
[3)-altitude position of target in meters
[4]- target heading in milliradians clockwise from northing
[51- target pitch in inilliradians positive up

[6]z target roll in milliradians clockwise positive
[71- speed in meter/sec

[8)- status
[9)- spae configuration pa•nmete/
/P[101-data transfer instruction parameter
.0 no change
a1 delete old view data
-2 delete old view data and add new data
[11]=.-ew resolution
[12]resolution linear array dimension
[13]-view heading milliradlans

[14]-view pitch milliradians
(15]-view rolU milliradians

183

[161= image center in column pixels. i
[171- image center in row pixels, j
[18)- image scale in pixels per millimeter

[191- spare view puarnetero/

int NUMTAR&TRIAL; / number of targets in trial /

/****************** -- AND FLIGHT **L-- N*********************

int FLIGHTCHAR[101]j* Missile flight characteristics

(0]- flight speed in meteus per second

[II-turn rate in degrees per second
[2)-launch acceleration in metersisec/sec

(3) to (9) - undefined*/

int IFOVNOW[1OIJ* instantaneous field of view vector
(01-easting pobitzio of camera in meters

(l]-nonhing posiion of camra in meters
[2]-altitude position of camera relative to sea level
(3]uboresight direction heading clockwise from
northing axis(miliradians)

[41-boresight direction pitch positive up from
horizontal plane(milliru)ian)

(5]=field of view roll about boresight vector

clockwise positive looking out(millirads)

[61-zoom factor in milfiradlans

(71-curser Iccation, x pixels in upper word
y pixels in lower word
(8)-auto pilot contral status.
O-pre launch
I=launch under auto pilot control

2-flight under auto pilot control

3-flight no autopilot

4aflight lock on target

5-crash no signal

(91- spare*/

184

int 1OYVPR1EDIC" EDICTNT.MAX][8]P 1FOV predict matrix
[01-easting position of missile in metas
[lJ-cwM*hlng position of missie in metemo

[21-altitude position of missile in meters

(3]- easting velocity direction cosine
[4]. northing velocity direction cosine

(51= vertical velocity direction cosine

[6]- speed in meters/sec
[7]- autopilot control staus
O-pre launch
I-launch under auto pilot control
2-flight under auto pilot conmrol

3aflight no autopilot

4-flight lock on target
5-crash no signal*/

int PREDIC'.NT[PREDICT_INTMAX,/* Predict interval

array in seconds. '/

int WAYPO1NTS(WAYPOINT_MAXJ[3)U/* point coordinate vectors*/

int LOCK.POSIMAGE[3; /0 target lock position and status in

image coordinates returned to PVG from flyout model

[0] - pixel row count

[1] = pixel column count

[2] a lock status <0 not locked, >0 locked*/

int LOCKPOSUTM[4]; / target or terrain position and status

of locked on pixel location sent to flyout model
from PVG in UTM coordinates

t0]- easting in meters
P1] = northing in meters

[2) a altitude in meters from sea level

[3] - miss distance from closest target if zero lock

on identified target otherwise it is locked on

a terrain feature*/

185

P ""*****P*****e**O** u'rT IMAGE PARAMETERS DECLARATIONS*-********/

mt OUTPUrIMAGE[PVGI.EIGHTIPVGWWTiHI,/ output image buffer

bits 0 to7 red

bits 8 to 15 green

bits 16 to 23 blue

bits 24 to 31 alpha*/
/ THIS WILL NOT WORKII YOU PLOT A COLOR INDEX, NOT AN RGB VALUE. /

short RAY_SEG(RAYjPROC_MAX][4]J/ ray tre calculation image
window definitions the first dimension is the

processor number, the four parameters represent
0- lower left row

1- lower left column

2- upper right row
3- upper right column*/

u-short TAROUT(PVGHEIGHTIMPVGOWIDTH][21;

/0 Target PVO output army

[01= gray shade

[Ila slant range/

int TERC-UTIPVGHEIGHT] [PVGOWIDTH1f2J;

10 Terrain PVG my trace output army

(0)- tenain data base element

[P I slant range*/

u_char RLUT[RLUTBYTES] P Rendering lookup table converts terrain
dam base and environmental parameters to gray shade*/

u-char ATlLUT[ATILUTrBYTES];/* Atunmospheic anuation iookuprl

/'**"**** * * ***ADMINISTRATIVE SOFTWARE DECLARATIONS***********/
/*** M*0**********MEMORY MANAGEMUET DECLARA TIONS********"**'****/

/******$*O****O***** TAAC BOARD PARAMETERS DECLARATIONS******"""***"*/

/********************HSPVG HARDWARE PARAMETERS DECLARATIONS*"*****""/

#endif

186

#ifndef PVGINCLUDD
#define PVroINCLUDED

FILENAME: PVGDEC.IN

PURPOSE: GLOBAL PARAMETER DECLARATION FILE FOR PVG ALGORITHMS

DESCIUPON: The PVGDEC.IN include file includes all global variables
required for sharing data between major software components of

PVG software.
Paramneters are divided into major categories using asteric lines.
All global variables shall be ALL CAPITAL letters.

USE EXAMPLE:
#include <PVGDEC.IN>
e.eeee*e*ae************eeee *co~ TR *** **************.*******

#include 'PVGDEFIN"

i * ** COLOR PARAMETERS DECLARATIONS ******** ***********

!******************TERJRAIN DATA BASE DECLARATIONS***"**** " 0*******e**/

/0 Sun main memory terrain storage buffers*/
extern u-int TERRAINI [MAX-BLOCK I][BLOCK SIZE]JPone meter
terrain buffer*/

/* Te•rain data bit assignments valid for all resolutions:

321
10987654321098765432109876543210

I ELE I SPARE I NOR ISI VEG I GSV I

where:

ELE - elevation from sea level to top of vegetation in meters

SPARE a not used
NOR = 4 bit surface normal
S z sun shade bit
GSV - gray shade value

1/

187

extcn int TERRANAAPfMAX..EASTBLOCKI[MAXNORTI-BLOCK]J' terin map

contains pointers to znmin data blocks/

exten int HAVEMAP[MAXEASTBLOCK][MAX_NORTHBLOCK]JJ Terrain resolution

mal tells what resolution blocks ar in memory*/

1* range .esolution parameters 0/
extern int SR mE(RES.RANGE NUM];/rminimum resolution in meters /

exter int SRMAXCRESRANGENUMT]/*maximum resolution in meters*/

extern int SRSTEP[RS-RANGE.NUM],* step size in mctrs*/

/0 HSPVG terrain data management */

extem int IFOVGRID[MAXEASTBLOCK][MAXNORTh_BLOCK]W/ Terrain grid

to image map. Specifies the image location of

ground points.

EX: IFOVGRID[E]NI= image i coordinate

in upper word

- image j (row) coordinate

in lower word
= -I if terrain point is not

in the IFOV image*/

/0 HSPVG terrain data communication variables*!

extern ushort ThPROCQHASMAXEAST_BLOCK](MAX-NORTHBLOCK]

[RAY_PROC_MAXI RES._RANGENUM;/* Map of terrain

data in the HSPVG ray ace processors.
Dimensions are:

-casting quarter kilometer block numbers

-northing quarter kilometer block numbers

-ray processor number

-resolution ranges

for each resolution range a 16 bit value is stored
with the following meaning

bit 15 Bits~tol4 description
0 Ono data no need
1 Onu data but needs it

0 block#has data no need

1 block# has data and needs it

188

0/
exten ushort TERPROCSEND(RAYM1OC_MAX+ IJ[MAXBL0OC64114];

/0 Termin processor send list. Dimensions are

-HSPVG processor number were data is to come from

O- SUN processor

-list entry index sized to allow a full

of every quarter kilometer

00[0-destinalion processor number
if -I means delete this terrain data

00[l]-easting block number of data to be sent

00[2]-noahing block number of data to be sent

00[31-resolution of data to be sent*/

extemn ushort SEND[RAY_PROCMAX+1J;/* list entry pointer for

TERPROC_SEND contains the number of blocks

each processor needs to send.

/*****s**************TARGET DATA BASE DECLARATIONS*********e*0ee********

extern int TARGETLIST[MAXTARGETS][101:.P target information list

[0]=target type ID
([)-easing position of target in meters

[21-northing position of target in meters

[31-altitude position of target in meters

[4]= target heading in millirads clockwise from northing

[5Jz target pitch in millirads positive up

[61a target roll in millirads clockwise positive

[7]. speed in millimeters/sec

181- status
[91= spare configuration parameter/

extern struct HAVELISTEL I
unsigned char *TAR_'Tr /0 pointer to target data in memory '/
int RES; / resolution index of target data 0/

) HAVELIST[MAXTARGETS): /S list of data in SUN memory

IOSUN resident target file buffers. These buffers are sized to hold

entire target file for a binary write*/

extern unsigned char TARBUF I [MAX-TAR I [TARISIZEJ:

189

/0 l's rsolution SUN residen target buffer *1
ete• n unsigned char TARBUF2IMAXTAR2J(TAR2_SIZE]:
/0 2'nd resolution SUN resident target buffer */
exten unsigned char TARBUF3[MAX_TAR3J[TAR3 SIZEJ]

I 3'd resolution SUN resident target buffer 0/
exten unsigned char TARRUF4[MAXTAR41[TAR4..SIZEJ,

is 4'th resolution SUN resident target buffer 0/

extern int TA LRF.NDLISTfMAX TARGETS][4];/ list of data to be sent to the
target processor
(0jesource of data processor ID

I 1)-destination of dam processor ID
(21-source data start address of data packet (UNUSED)
(3)-number of data elements to send/l
exte•n unsigned char *TAMSEND_LIST-FTR[MAXTARGETS];

/0 replaces [21 of above */

extern int TARHAVE LIST[MAX TARGETS)(20)].i information block buffer
used to collect and store information about what data
the target processor has.

(0)=target type ID
>0 target type ID
<0 player not needed or not in field of view
(il]easting position of target in meter
(2]=northing position of target in meters
(3)-altitude position of target in meters
(41- target heading in milliradians clockwise from northing
15]= target pitch in nilliradians positive up
161= target roll in milliradians clockwise positive
(7)- speed in mews/sec

(8)- status
(9)- spare configuration parameter*/

/0[10],data Dwisfer instruction parameter
=0 no change
-I dekl.e old view data
-2 delete old view data and add new data
[D1]-view resolution
[12)-resolution linear array dimension
[13]-view heading milliradians

(14]=view pitch milfiradians
[151-view roll milliradians

190

'1- . . . ----~ ~ --

[16= image cnter in column pixels, i
[171- image cemn in row pixels, j
[181. image scale in pixels per millimeter
[191n span view parameter*/

extern int NUM..TARTRIAL; /* number of targets in trial /

/********f**** *****CAMERA AND FLIGHT DECLARATIONS******* a********/

extern int FLIGHT CIAR[1IO3] Missile flight characteristics

[0]- flight speed in meters per second

[]=-turn rate in degrees per second

[2]=launch acceleraion in meters/sec/sec

(3) to (9] - undefined*/

extaen int IFOVNOW[I0]JV instantaneous field of view vector

(0)-easting position of camera in meters
P l]-nothing position of camera in meters

[2]-altitude position of camera relative to sea level

[31-boresight direction heading Jockwise from

northing axis(mWiiradans)
[4]=boresight direction pitch positive up from

horizontal plane(milfiradians)

[5]-field of view roll about boresight vector

clockwise positive looking out(millirads)

[6]-zoom factor in millirmtians

[Ti-curser location, x pixels in uppet word
y pixels in lower word

[81-auto pilot control status.

-pre lunch
I =launch under auto pilot contol

2-flight under auto pi:)t control

3-flight no autopilot

4=flight lock on target

5-crash no signal

(91- $Pam*/

191

extern int IFO)V_PREDICPREDICTRINTMAX][81]J IFOV predict matrix
[Olmeasting position of missile in meters
[Olnathing position of missile in meters
(2]maltitude position of missile in meters
(3- easting velocity direction cosine
[4]a northing velocity direction cosine
(5]- vertical velocity direction cosine

(61- speed in metes/sec
M= autopilot control status
O-pre launch
I llaunwh under auto pilot control
2-flight under auto pilot control
3=fflight no autopiiot
4=flight lock on target
5=crash no signal/

extern int PREDICT_NT[PREDI _'1" NT_MAX]jP Predict interval
array in seconds. 0/

extern int WAYPOINTS(WAYPOINT MAXI(31J point coordinate vectors'/

extern int LOCKPOS_IMAGE[3]; P target lock position and staits in
image coordinates returned to PVG from fliout model

(01 - pixel row count
[1! - pixel column count
(21 - lock status <0 not locked, >0 locked*/

extern int LOCKPOSUTMV.']: /0 target or terrain position and status
of locked on pixel location sent to flyout model
from PVG in tTrM coordinates

[01- casting in meters
(I] - nonhing in meters

(21 - altitude in meters from sea level
[31 a miss distance from closest target if zero lock
on identified target otherwise it is locked on
a terrain feature$/

192

/*******************OUTPUIT IMAGE PAR$AMEERS DECLARATIONS**'******e****/

extern int OUTPUT IMAGE(PVGIEIGHTfIPVGWIDTH] output inmge buffer

bits 0 to7 red
bits 8 to 15 green

bits 16 to 23 blue
bits 24 to 31 alpha*/

/ T-IS WILL NOT WORK!I YOU PLOT A COLOR INDEX, NOT AN RGB VALUE. '/

extern short RAYSEG[RAYPROCMAX][4]/, ray t-.ce calculation image
window definitions the first dimension is the
procesor number, the four parameters represent

0= lower left row
I- lower left columnn

2- upper right row
3= upper right column*/

extern ushort TAROUT[PVG HEIGHT][PVGWITDTHI[2];
/ Target PVG output array
(01- gray shade
(11= slant range*/

extern int TEROUT[PVGHEIGHT][PVG_WIDTH][2];

/0 Terrain PVG ray trce output array
[0]= terrain data base element
[I)= slant range*/

extern uchar RLUT(RLUT_BYIES];/ Rendering lookup table converts terrain
data base and environmental parameters to gray shade*/

extern u-char ATLUTAATTrLUTBYTES1J/• Attmospheric attenuation 1,bokup*/

i*********************Os'yI'RAT SOFTWARE DECLARATIONS"* "***** 5/

/********"**********ME*MORY MANAGEMENT DECLARA*ONS***************/

1** ***#*************TAAC BOARD PARAMETERS DECLARATONS****************

* 'HSPVG HARDWARE PARAMETERS DECLARATIONS*****,***/

#endif

193

#ifndef PVGDEFJNCLUDED

#define PVG_DEFJNCLUDED

FI.ENAME: PVGDEF.LARGE

PURPOSE: GLOBAL PARAMETER DEFINITION FILE FOR PVG ALGORITHMS

DESCRIPTION: The PVGDEF.IN include file includes all global constants
required for defining global constants used by PVG software
components.

Parameters are divided into major categories using aswric
lines.
All global constants shall be ALL CAPITAL letters.

USE EXAMPLE:

#include "PVGDEF.N"

in your directory link to /home/fogmfnmclude/PVG DEF.IN

*********e*a***********e***e**CODE **ART*************************~*******/

#include <FOGM/stdef.h> *standard definitions 0/
/*#include "stdef.h**/
#include <sy/Wypes.h>

/*************** COLOR. PARAMETERS DECLARA TIONS****00*00*0** *****/

/ ***..*********0***0**TERRAfN DATA BASE DECLARA T IN*S*S*0***** ***** /

/0 Sun main memory terrain storage buffers*/

/0 terrain data blocks all cover a 256meterx256 meter ara/

#define MAX-BLOCKI 4 / # one meter terrain BLOCK I_SZE*4byte blocks*/
#define BLOCK 1_SiZE 65536 / # elements in 1 meter block */

#define MAXBLOCK4 1024 / # 4 meter terrain BLOCK4-SlZE*4byte blocks*/
#define BLOCK4 SIZE 4096/* # elements in 4 meter block */

#define MAXBLOCK16 14336/* # 16 meter terrain BLOCKl6_SIZE*4byte blocks*/

194

define BLOCK16-SIZE 256 / # elements in 16 meter block 0/

#define MAX-BLOCK64 14336/0 # 64 meter terrain BLOCK64_SIZE*4byte blocks*/
#define BLOCK64_SIZE 16/0 # elements in 64 meter block 0/

#define MAX_BLOCK256 14336 / # 256 meter train 4byteblocks*/

Odlefie MAXEASTBLOCK 128 /0 256 meter blocks in east direction/*

#define MAXNORTHBLOCK 112 / # 256 meter blocks in norh direction*/

#define MINEASTUTM 43328 /S lower left hand comer of data base UTM east*/
#define MIN_NORTH_LrrM 63904 /0 lower left hand corner of data base UrM north*/

/0 Range resolution parameters */

#define RES_RANOE_NUM 4 / # resolution ranges 0/

/0 Resolution codes 0/

#define RESOLUIONI 0
#define RESOLLTION_4 1

#define RESOLIMON-16 2
#define RESOLUTION64 3

/S"*e*se*SS*5**** **TARtGET DATA BASE DECLARA TI*OS* N***********I*****

/0 SUN target data buffers*/
#define MAXTARGETS 256/0 Maximum number of targets in PVG*/
#define MAXTARTYJE 32/SMaximum number of different targets,/

#define MAXTARI 8/S Maximum number of target types in I'st
resolution level*/

#define MAXTAR2 8/S Maximum number of target types in 2'nd
resolution level*/

#define MAXTAR3 8/* Maximum number of target types in 3'd

resolution level*/
*defime MAXTAR4 8/S Maximum number of target types in 4'th
resolution level*'

#define TARISIZE 1069056/S Buffer size in bytes for 64pictures of I'st

resolution level*/
#define TAR2_SIZE 282624/0 Buffer size in bytes for 64 pictures of 2'nd
resolution level*/

#define TAR3_SIZE 86016/ Buffer size in bytes for 64 pictures of 3d

195

resolution level*/
#define TAR4_SIZE 36864/0 Buffer size in bytes for 64 pictures of 4'th
resolution level*/

j ******e*********CAJE4 AND FLIGHT DECLARATIONSO**0*' *0*'*** ** /

Mertc PREDICT INTMAX 4 / Number of IPOV predict intervals/
#define WAYPOINT_MAX 2a) 1 Maximum # way point coordinte vectos*/

/****"***4#*.*O"OUTPIJT IMAGE PARAMETERS DECLARATIONS""""""**/

#dermc PVOHEIGHT 256 /0 output image # pixel rows*/
#define PVGWIDTH 256/0 output image #pixel columns*/

#define PVGPIXSIZE 65536/0 output image size in pixels*/

#define RLUTBYTES 2097152/0 # bytes in the RLPUT/
#define gLUBIT_.SIZE 21* P# bits in RLUT input addess$/

#define VIEWINDEXSIZE 3 /"# bits in view vector of the RLUT input address*/
#define NORMINDEXSIZE 4 /00 bits in surface normal of the RLUT input address/

#define ATTLUT_BYTES 2097152 /*# bytes in attenuation table ATTLUTI/
#define AITLUTBITS1ZE 21/0 # bits in ATTLUT input addressa/

#define TARVIS_MASK 253/*if target gray shade is 25 S let background through /

10*00e***"0*e0*"*e *9ADJMS'rIATIVE SOFTWARE DECLARATIONS********/

#define D2R 0.0174532 / degrees to radians */
tefine D2MR 17A532 P" degrees to milliradians */
#define R2D 57.295827 * radians to degrees 1/

detfme MR2D 0.057295827 1 milliradias to degrees 0/

/**0*****e***e"*ee*MEMORY MANAGEMENT DECLARATIONS*** * *****/

4define MAX-SEND 143361* maximum number of messages in
TERPROCSEND 0/

/****$**********$$***Tj*AAC BOARD PARAMETERS DECLARATIONS*'******* */

196

/e*eeee******ee*e*1j**HPV0 HARDWARE PARAMXlERS DECLAR.ATIoNs~******I

Wmfie RAY-PROC..MAX 1 /0 maximum # mtrayce procesaca
#def inc TAR-PROC-.MAX I11 maximum # target proceamrs'

#endif

197

* (C) Copyright Nascent Systems Development Inc. 1991
* Developed under contract DABT62-90-C-0006, Subcontract CSC/ATD-WR-FO-0101
"/-

FILENAME: get_ýe

AT1"HOR: J.R. Akin, August 1989

PURPOSE: Read a block of terrain dam into a specified buffer location
which is stored in SUN main memory. The block needed has a
lower-left cormer at DB coordinates x, y.

DESCRIPTION:

Opening and closing files eats up a lot of time. Ideally, this function
should open up every file at star-up but it can't because the number of
files thai can be opened at one time is 60 and the number of FVDB files
is 83. Since other functions will open up who-knows-how-many files. I've
st the open file limit to MAXFILEHANDLES, an abitrrwy value. Files
am opened and usage statistics maintained until the file handle list is
exhausted, at which point the least often used file is closed, and a ncw
file is opened to take its place.

Instead of using time-wasting string comparisons for file opens, a list
of hash values for file names is maintained. The hash value for a file
is computed as:

hash-value - (resoltitoncode << 8)1 tile number

This way, time can be saved by not using nested "if" statements to
determine disk partition numbers.

Processing Steps:

make sure the xy coordinates are in bounds

based upon the resolution code

198

I
compute the block length
set the dama block pointe to the starting ad&es of the

1p--law (global) tMRRAIN buffer

compute the tile number
compute the block number

compute the hash value based upon the tile and block number

if the file with this hash value is already open

get the file handle for it
increment the number of times this file handle has been used
I
else

find least used file handle

if ther is already an opeu file associated with it
close the file

open a new file for this file handle index

set number of times file handle has been used :o 1

compute file offset for bloc-k number

seek to that file offset

compute the number of bytes that need to be read

read the block into the arndy reftewced by bufindex

reeutn number of clemeno successfully read

199

RETURN VARIABLE: Returns number of elements suocessfully loaded, else ERROR.

REQUIRED INCLUDE FILES:

PVGDECJN

PVGDEF.IN

LIBRARIES REQUIRED:

INPVj)OUTPUT FILES: use name description

EXTERNAL PARAMETERS: use name include description

Sun main memory terrain storage buffers (declared in PVGDEC.IN) updated
by get-ter() and called by tstwterc. MAXBLOCK sizes are declared in
PVGDEF.IN.

10 TERRAINI [MAXBLOCK1] (BLOCKISIZE]
10 TERRAIN4 (MAXBLOCK4) [BLOCK4_SIZE]
1O TERRAINI6 RMAX-BLOCKI6] [BLOCK16_SIZE]
10 TERRAIN64 [MAXBLOCK64] [BLOCK64_SIZEI

FUNCTIONS/SUBROUTINES CALLED: None.

USAGE EXAMPLE:

getjterr._stw = getterr(RESOLUTIONI. x, y, bufundex):

This call reads a quarter kilometer (block) of 1-meter data at location
index xy and puts it into TERI A!Nn[bufrndex}.

200

include "PVO-D...DRFN
Anclude "PVO..DEC.N"

#include 'caadi0.h>

#include <fcntLh> r for binary /0 0/

#defln MAX_.FILEHANDLES 32

#define MAX.YVDB..FILES 83
#define MAX-Y1LE-NAME-.LEN 32

#define MAX.PVDB_.EAST 32767
#define MAX YVDB..NORWH 28671

#defln UNUSED -I

int getuen(rus~code, x. y. bufuidex)

int res-c~ode: /0 Resolution: 1,.4. 16. or 64 ~
inf x. y; f0 terrain map coordinate indices 1/
int buf index: /0 buffer index of block to be read 0/

extern unsigned int TERRAINi [MAX-.BLOCK1I [BLOCK I-SIE);
extern unsigned min TERRAJN4 [MAX..BLOCK41 (BLOCK4.SIZEI;
extern unsigned min TERRAIN16 WMX..BLOCK 16] (BLOCK16..SEZE]:
extern unsigned int TERRA2N64 (MAX..BLOCK64I [BI.0CK64..SIZEj;

/* Actual file names, only used for openo1

static chat file...name [MAXPVDBFLES) (MAXFILENAME..LENI

I
"/pvdb...a~ffvdb.64". "/pvdb..damlpvdb. 16",

"/pvdb..daiapvdb.4.0O". "/pvdb..dazu/pvdb.4.0l", "/pvdbj.dawpfvdb.4.02".
"/pvdbjlaMlpvdb.4.03", "/pvdbj~ta'pvdb.4.04", "/pvdb...datapvdb.4.05".
"/pvdb...datepvdb.4.06". "/pvdbjlatWpvdb.4. 10", /pdb..data/vdb.4. 11",

201

"/pvdb..daza/pvdb.4.12", "j/pvdb..daua/pvdb.4. 13", "/pvdb,.datm/pv&.4. 14",
"/Pvdb-datblpwdb.4.1S, -/pvdbjdW~pvdb.4. 16", -/pvdb..dafia/vd.4.20",

"/pvdb...dalaj'pvdb.4.2~~ 1" Yvb.V~/vb..2,'pd..a vdb.4.23-,
"-/pdb..da&apvdbA.21.24",vdb...azWpdb.4.225". "pvdb..d"ipb42"

"~pvdb..daftaJ~wdb.4.3O", l/vb.dz/vb431,"pdjapvdb.4.32,
"*'Ivdb,.AM.4wdbA.23", #-/pvdb..dau~pvdb.4.34". "/pvdbj~z/v~.. d"e
"tpvdb..dabzpvdb.4.30". "/pvdb..d&W~pvdb.4.3 1". "/pvdb...data/pvdb.4.41 ".

"/pvdb-datIpjvdbA.33". "/pvdb..datp/pvdb.4.343" -/pvdb..da~u/vdb.4.35-.

"/pvydb..d&Wpdvdb.4.W." "/pvdb...cbi~'pdb.4.40", "/pvdb..dat&Ipvd.4.4 I".
"j/,vdb..datVWdb.4.5 1", "/pvdb dmslpvdbA.43.S" "/pvdb..datatpvdb.44.3"

"/pvdb.Aata/pvdb..54". "/pvdb..dazalvdbA.4.5". "/pvdb..daza/pvdb.4.W6,
"Ipvdb..dota/pvdb.4.60", "IpvdbjdaWpvdbA.526", "/pvdb..datza/pv&.4.62",
"I/pvdb..d&UzpvdbA.54-.6 -/pvdbjhtswpdbA.55.6" "Ipvdb..da~affvdb.4.565,
"tpvdb..dab/vdb.4.66". "/pvdb...dazWpdbA.6.7". 7pvdb..dato~vftb.4.7 1".

"/Pvdb..dabktpvdbA.63.2" /pvdb...date/pvdbA.4.7", "/pvdb...dazafipvdb.4.64".
"/pvdb..dats4,vdbA.4.7", "/pvdb...data/pvdb.4.70". /vbaod.. "

"ipvdb-dlaupvdbA.2. 13", 'pvdb..datzaipvdb. 1.14", `/pvdb...az~vdb. 1.15".

"/Pvdb..dawkffidbA.75.2, "/pvdb...datWpdbA.71.2,"/db.azpb.14,

"i/pvdb..dasa~,vdb. 1.253". "/pvdb..datoffidb.1. 314", "/pvdb..damffpvdb. 1.32 ".
"*ipvdb.Amaffivdb. 1.33", 4wpdbjhzLopvdb. 1.234", /pdb..data/pvdb. 1.35".
"/pvdb..datza'pdb.1 .21", ")pvdb..dau~pvdb. 1.42", ,/pvdb._dat*,pvdb.1.432",

"/pvdb...datif/pvdb. 1.44-. "j/ivdb..d&Wapvdb. 1.45". "/pvdb..daz~pvdb. 1. 51",.
-/pvdb-.daza4,vdb. 1.52-, "/pvdb..shWpvdb.1. .53". "/pvdb..datWpvdb. 1. 54".
"/pvdb..dmotpdb. 1.6 1", "/pvdb-datapvdb. 1.62". "tpvdb...date/pvdb. 1.63",
"/pvdb..daz&'/,vdb.1 .64"

/0 Hash values for file namnes1

static int filejnamejhash..yaiuc (MAX...VDBFLESJ

I
(RESOLLMfON..64<4I)KxOO,
(RESOLUTION_16<4<)M)xOO,

/0 4.-Iete files */

(RESOLfLMON_<4)KhxOO, (RESOLUtMONA<48)&~Ol, (RESOLUTION_4.c8)1002,

(RESOLILMONA4<4)KhO3, (RE.SOLLM ON <I)KhxO4. (RESOLbTnON_4<<8POXO5.
(RESOLUTIONc4<)*x06,

202

(RMSOLtMfONA4c4)Ifx 10, (RESOLUTIONA4<4)Ifxl 1, (RESOLtMJONA4<cB)flx12,

(RBSOU~flONA4<4)I0x 13. (REOLtMONA4<4)ft 14. (RBESOLLtrONA«<8)Ifx 15.
(RESOLUtMONt4<<4)Nk 16,

(RESOLUM"N.4<c)K2I). (RESOLUJ1ON.A«<8)1x2l, (RESOLLtiON_4<4)0x22.
(RESOLUFIONA4<4)10x23, (ESOLLM~ONA<8)Kfx2, (RESOLUTION.A<<8)10x5.

(RES0Ltfl0Nc4<I0)fM.

OMBOLUTION..4<4)IVx 30. (RESOLL~flO"A4)0x 1, (RESOLtMlONA«<8)10x32.

(RESOLUM"NA4)10x3. (RESOLUflON_1<4S)Kh34. (RESOLfLrONA«<8)10x35.

(RESOLUF!ON..4<c8)Nft36,

(RESOLURON_4<cS)ft4O. (RESOLUFON_.A<8)10x4 1. (RESOLUIMON.A4c<8)10X42,

(RESOLtmON.4<48)IOx43, (RESOLUTION.4<c8)J0x44, (RESOLUTIONA<8)l0x45.

(ESOLUIMON..4<<c8)kDX46,

(RBSOLUtMONA<4S)IfxO, (RE-SOLt'LMONA<48)KfxS1, (RESOLLMlON_4<<8)10x2.

(RESOLtflON..4c4)K~x53, (RESOLfLMON.4)10x54, (RESOLUTIONA4<4)OXSS,

(RESOLUfON..4<4)Kk6.

(RESOLtrION_4<48)10x60. (RESOLLtrONc4<<8O61. (RESOLUtiON-4zc8$0x62,

(RSOLLtiON. 4<S)NI63, (RESOLUTION..4<4)1064. (RESOLtMfON.A«<8)1065.

(RESOLUtiON.A<c8)K~x66,

(RESOLtMlON_4A<l)0x70. (RESOLUtMON_4<4S)ft7 1. (RESOLLiiONA«8)1072.

MMEOLULiON_.4<4%)Vx73. (RESOLUliON4<S)Kx74. (RESOLLMTONA«8)10X75,

(RPESOLtflON..4<4S)Kf76,

/01 1.mesefiles /

(RESOLUTIONjk<4)K~x13. (RESOLUtIONJ<'8)i~x 14. (RESOLUTIONJ «8)I~lftS

(RESOLUtiOKNJ<c)Kbx2. (RESOLLmrONJ<4)KX23. (RESOLLtiON... 1 8)10"4

(RESOLLiiONJ'c<8)10x25,

(RE'SOLtflON-J<8)10x3 1, (RESOLUTIONJI<<)Kh32. (RESOL~tiON...I<«8)133.

(RESOLfLMON-k<8)l0x34. (RESOLfLMON-<)«8)035,

(RE-SOLUI1ON-k«S)K~x4 I. (RESOLLrIONJ1<c8)K)2. (RESOLUTION...I «81X43,

(RESOLUIMONI<4)K~x44. (RESOLLtiON l<8c)Khx45,

203

(RBSOLUTIONl<<I)Ix5 1, (RESOLUTION l<<8)10x52, (RESOLTILONI<<8)I0x53,

(RWSOLUTION_I<<8)ftS4,

(RESOLUYrlON_I<<S)IKx6l. (RESOLUTIONI<<s)Kf62, (RESOLLTMON1<<8)10x63,

(RESOLLMONI<<8)1•x64
};

P fdeopend(nJ tells whether a Mie has been opene Static */ge
p without iniatiion gamunom tia elements will be set to 0 (NO) */

staic ilt file.opened [MA.X_PVLBFI.ES] ,

UNUSED, UNUSED.

UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED. UNUSED.

UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED. UNUSED, UNUSED, UNUSED, UNUSED, UNUSED. UNUSED.

UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED. UNUSED,

UNUSED, UNUSED. UNUSED, UNUSED, UNUSED, UNUSED, UNUSED.

UNUSED. UNUSED, UNUSED, UNUSED, UNUSED, UNUSED. UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED.

UNUSED, UNUSED, UNUSED.

UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED. UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,

UNUSED, UNUSED, UNUSED. UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED

I ;

/ List of file hane used for O/

static imt th (MAXFILEHANDLES] I

UNSED, UNUSED. UNUSED, UNUSED, UNUSED, UNUSED, UNUSED. UNUSED,
UNUSED, UNUSED, UNUSED, UNUSED, UNUSED. UNUSED, UNUSED. UNUSED,

UNUSED, UNUSED, UNUSED, UNUSED. UNUSED. UNUSED, UNUSED. UNUSED,

UNUSED, UNUSED, UNUSED. UNUSED. UNUSED. UNUSED. UNUSED. UNUSED

204

/ List of hash vaJue indkk for opend files 0/

stoaic int fi hash-valuejnd•e (MAXF.LEHANDL]ESJ

UNUSED, UNUSED. UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
UNUSED, UNUSED. UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED. UNUSED,
UNUSED, UNUSED, UNUSED, UNUSED. UNUSED, UNUSED, UNUSED, UNUSED

static int fi¢_usage (NlAXFULX_HANDLES)
I
UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED, UNUSED,
UNUSED, UNUSED, UNUSED, UNUSED, UNUSED. UNUSED. UNUSED, UNUSED,
UNUSED. UNUSED. UNUSED, UNUSED, UNUSED. UNUSED, UNUSED, UNUSED,
UNUSED, UNUSED. UNUSED, UNUSED, UNUSED. UNUSED, UNUSED. UNUSED

static int fhjindexjo..use -0; /* file handle index to use 0/

int tilenum, block.num; ts tile and block numbers /

int hash-value:
int hashindex: /I hash index */

int usage;
int minusage:
int n:

int block-length-
unsigned int *bp; I/ block pointer /

unsigned int file offset;
unsigned imt bytes-tomrad, bytes-mad,
int elements jeadl

205

is e.*************** BEGI1 EXECUTION , ,**** *******/

if(x < 0 1i x > MAX.PVDBEAST)

I
fprintf(sadout, "get_ter X coordinate (%d) OOB~n", x);
return(ERROR);
i

if(y < 0 I y > MAX_PVDBNORTH)

ftrintf(sadout, "get_ter Y coordinate (%d) OOB\n'. y):
retum(ERROR);

I
if((x % 256)!1- 0)

fprintf(stdout, "get-ter. X (%d) not an even multiple of 256\n", x),

return(ERROR);

if((y % 256) 1= 0)
I
fprintf(sadot, "getter Y (%d) not an even multiple of 256\n". y):

return(ERROR);

switch(restcode)

case RESOLUTIONI:

blocklength - BLOCKI_..SIZE.

bp = &TEhLRAINI (bufindex][0]:

break;

default:

fprintf(stdout. "getjer Invalid res._code (%d)Nn". rescode);
return(E'RROR); /* invalid resolution S/

/0 Tile and block numbers are the same regardless of resolution /

tiie num - ((>>8) & MxRO) I (y>> 12);

block urm - ((x>>4) & OxFO)! ((y>>8) & OxF);

206

/ ... but me hash values arn't. The 16- and 64-met• dautses ARE/
1 btaen into tile number but they usen't stoed in multiple files. 0/

if(rescoý < RESOLUTIONJ6)

hashyvalue - (rescode << 8)1 til-num;

else

hashyvalue - (rescode << 8);

/" Find the index to die file name's hash value 1

for(hash-indxxu&. hashjindex < MAXVDBFIL.ES: hashindex.-+)
I
if(hash_vaue -.-- fle_ne_hysh_avale[hash_intiex])
break;

if(hashjndex - MAXJV•)B.FI.ES) / no match was found

fprintf(stdout, "No data available at %d,%d, for resolution %d'n",

x, y, res-code);

return(EkROR);

if(f'd¢eopened[hash-index] != UNUSED) / file is already open /
I
1/ Get the proper file handle and increment the number of times used /

fh_index_to use - fileopened[hash_index];

fileusage[ft•_index-to-use].+-.

else/0 this fde needs to be opened "/
I
/0 Open a new file. Find the least used file handle: I/

/' if it is used (open). close it first. 0/

fh._indexto_use - LX

min-usage - fde-usage[fhi-index-tou-jei]

for(n-O; n < MAXFILEHANDLES: n++)

usage - fileusag"(n];

207

if(usge < min-usae)e
I
mirkusage =usage;
flujindexjo...use a ni;

if(fhffh index~to..use] I- UNUSED) /0 close it first/
f
close(fh[fl-ndex-to-usej)
fýfhidexjtojzseJ = UNUSED;

_oQpened[fl~hash-yalue-index~fi...mdex_3o~use] I UNUSED.

/0Open the new file

fh[ftkjndexjtojzseJ open(fdejiarne[hashjindexJ. ORDONLY)

if(fb[fl~indexjoju1 an ERROR)

fprilltf(stiout, -get-ter Can't open file~n")
retun(ERROR);

eIe

file_,opened~hash indexJ - fhjindex-to-use;
file-usage(fli-ndexjto.usel - 1:
fbhh*vaiueindexjfbhndexjo-useI - hash-ndex;

/0 Compute file offset for this block-num. based upon the resolution1
/0 and seek to that location.1

switch(res..code)

caeI SLIfOJ
case RESOLUTION_4:
caw..f~e RES bLUokNum*bocjnt *szofn)

break.

208

/Fr 16a I&ad 64-mete reuoluiwi compu te fth dl quamnuemmber */
/0 number Mile..g7.TiJ.y). multiply it by thb number of elements in
/0 a tile, add the block offme and multiply by the number of bytes/

Pin an int. *

cane RESOLUION-16:
cane RESOLUTION-64:
file..offsez - (((tle~num>4)*7+(tile-jun&OxF))
"* (2560block-length) + (ockjiuinblockjIength))
"* sizeof(int)
break;

Wf lseek(fh~h-indexjto-.usel, file..offset, 0) ERROR)

fpriznf(stdout, "Can't seek on file'd")
reuum(ERROR);

/0Read block intoaddressatbp0/

bytesjo...rad a blockjengtli 0 sizoof(mi);

bytes-mad a mead(th(fluindIezjtojse1, (char O)bp, bytesjo...read)

if(bytes-mrad I- bytes-jo-mad)

fprintf(stdout, "Bad mead, X:%d Y:%d res:%d\n". x. y. es-code);
fprintf(stdout, "%d bytes rmad instead of %ft-,
bywteajer. bytes-to-ead)
return(ERROR);,

elementsjead - bytesjread / siz~eof(int)

fprintf(stdout, "X:*d, Y:%Sd, res~code:%d bufindex:%d &dres:%O8X~n",
x. y, res-.code, bufindex. bp)

209

ruuim(eianeusjs-md)

#undef MAXJfalHANDLES
#undef MAXJPVDB.YILE
#undef MAXYLB._NA?'fJLEN
#widef MAXPVDB..EAST
#widcf MAXYPVDBYNORTH
#undef UNUSED

210

LIST OF REFERENCES

[Ref. 1] Titan Tactical Applications, JANUS (A) 2.1 Software Design Manual, 1992.

[Ref. 2] INMOS Limited, The Transputer Family 1987, p. 4, April 1987.

[Ref. 3] INMOS Limited, Transputer Handbook, p. 1, October 1989.

[Ref. 4] Shiva, S.G., Computer Design & Architecture, 2nd ed., Harper Collins

Publishers Inc., 1991.

[Ref. 5] INMOS Limited, An Introduction To Transputers, Draft 2.0, pp. 5-6, January

1988.

[Ref. 6] Lewis, T.G., El-Rewini, H., Introduction To Parallel Computing, Prentice-Hall

Inc., 1992.

[Ref. 7] INMOS Limited, The Transputer Databook, 2nd ed., 1989.

[Ref. 8] Hoare, C.A.R., "Communicating Sequential Processes", "Communications of

the ACM", v. 21, n. 8, pp. 666-667, August 1978.

[Ref. 9] INMOS Limited, T9000 Transputer Products Overview Manual, 1991.

[Ref. 10) INMOS Limited, OCCAM 2 Reference Manual, Prentice-Hall Inc., 1988.

[Ref. 11] Alsys Inc., Alsys Ada Compilation System User Manual. 1989.

[Ref. 121 3L Ltd., Parallel C User Guide, 1988.

[Ref. 13] 3L Ltd., Parallel C++ User Guide, 1991.

[Ref. 14] NASCENT Systems Development Inc., The Pegasus Documentation Package

Book-], December 1992.

[Ref. 151 Inmos Ltd., Inmos Technical Note 53 - Some Issues in Scientific Language

Application Portion and Farming Using Transputers, by A. Hamilton, pp.

7-8, July 1989.

[Ref. 16) Inmos Ltd., IMS BOO4 Evaluation Board User Manual, pp. 1-18, 1985.

[Ref. 171 Inmos Ltd., Inmos Technical Note II - IMS B004 IBM PC Add-In Board, by S.

Ghee, 1989.

211

[Ref. 18] Alta Technology Corporation, CTRAM Computation Transputer Module Data

Sheet, 1993.

[Ref. 19] Alta Technology Corporation, Remote Tram Holder Installation Guide and

User Manual (Version 1.0), September 1991.

[Ref. 201 Alta Technology Corporation, HS1ISBUS Installation Guide and User

Reference (Version 1.1), October 1992.

(Ref. 21] Inmos Ltd., IMS B012 User Guide and Reference Manual, 1988.

[Ref. 22] Digital Equipment Corporation, Alpha AXP Systems Handbook, 1993.

[Ref. 231 ParaSoft Corporation, EXPRESS 3.0 Introductory Guide, 1990.

[Ref. 24] Perihelion Software Ltd., The HELLOS Parallel Operating System, Prentice

Hall International (UK) Ltd., 1991.

212

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexanderia, VA 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Dr. Ted Lewis
Code CS/Lt
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. Se-Hung Kwak 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

5. Dr. Se-Hung Kwak
75 Adams Avenue
West Newton, MA 02165

6. Maj. Eugene Paulo
TRAC-MTRY
Naval Postgraduate Schiool
Monterey, CA 93943

7. Dr. Amr M. Zaky
Code CSI'La
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

8. Dr. Wolfgang Baer
Code CS/Ba
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

9. Deniz Kuvvetleri Komutanligi
Personel Daire Baskanligi
Bakanliklar, Ankara / TURKEY

213

10. Golcuk Tersanesi Komutanligi1
Golcuk, Kocaehi / TURKEY

11. Deniz Harp Okulu Komutanligi1
Tuzia, Istanbul / TURKEY 81704

12. Taskizak Tersanesi Komnutanligi1
Kasimpasa, Istanbul / TURKEY

13. LTJG Cen Ali Diindar1
Ziya Bey Cad. Etibank Sitesi No: 14
Balgat, Ankara / TURKEY

214

